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Abstract. A group signature scheme is a powerful primitive by which
one can sign a message as a member of a well-defined group without
leaking one’s individual identity, but the group manager can revoke this
anonymity and reveal the identity of the signer. All existing group sig-
nature schemes incorporate a centralized manager that is a single point
of trust and failure. The group issuing manager is charged with issuing
credentials, and can maliciously issue bogus credentials that can be used
to sign but cannot be traced to any player. The group tracing manager
can choose at-will to revoke the anonymity of any group member.
We present the first group signature schemes that are completely decen-
tralized and have no single points of trust. To accomplish this, we design
a (t, n) threshold scheme that distributes control of the issuing manager
and the tracing manager. This removes the need to trust a single entity
to perform the roles of adding, revoking and tracing group members, as
these actions can only be done by a threshold quorum.
We present two highly efficient fully distributed group signature schemes
in this paper. Our first scheme is a distributed version of the BBS group
signature scheme (CRYPTO 2004), and our second scheme is a dis-
tributed variant of the Camenisch-Lysyanskaya anonymous credentialing
scheme (CRYPTO 2004). Our schemes inherit all its efficiency features
of the original centralized group signature schemes; in particular the sig-
natures are concretely very short.

1 Introduction

There’s often a tension between the need to authenticate oneself and the desire
to retain privacy. Consider the case of trusted platform modules (TPMs), for
example, where this conundrum manifests itself quite clearly. On the one hand,
a trusted enclave needs to sign its attestations to prove that they’re authentic.
On the other hand, if each TPM were given a unique signing key, this would
allow one to trace the activities of a specific enclave as all of its actions would
be linked to that key.

Group signatures are an effective tool to address this scenario where authenti-
cation is necessary, but fine-grained authentication would present a privacy issue.
Introduced by Chaum and Van Heyst in 1991 [20], a group signature scheme al-
lows a form of anonymous authentication where the anonymity set is a specified
group of users. Group members can sign messages, and anyone can verify that
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the message was indeed signed by a member of the group. However, the identity
of the individual group member who issued the signature remains private.

Without further constraints, constructing a group signature scheme that
meets this requirement is trivial: take any secure signature scheme S, distribute
a single private key sk to all group members, and publish the corresponding pub-
lic key pk. Using the shared private key, any group members can sign messages
on behalf of the group. Non-members cannot sign but can verify the group’s
signatures using the group’s public key, pk.

The complexity of group signature schemes stems from additional properties
that are often desired, properties which the trivial solution does not provide. Two
such properties are traceability and revocability. Traceability refers to the ability
to selectively trace or de-anonymize a signature to reveal which individual mem-
ber signed. Revocability is the ability to revoke a group member’s credentials,
thereby removing that individual from the group.

These properties are generally described in the context of trusted man-
agers: in a traceable group signature scheme, a tracing manager can de-anonymize
a given signature and unmask the individual signer who issued it. Similarly an
issuing manager is responsible for maintaining membership in the group: the
manager issues and revokes credentials to users, allowing or preventing them to
sign on behalf of the group, without affecting other members.

Group signatures are useful in a variety of contexts. They have served as the
basis for electronic voting schemes [4], auction protocols [50], early electronic
cash protocols [41, 45], and, as previously mentioned, are a key primitive used
in trusted platform modules such as Intel SGX [13, 14]. In these systems, TPMs
are issued attestation keys with which they sign statements attesting that the
execution was done correctly in the secure environment, and the ability to revoke
credentials is crucial.

1.1 Eliminating trust

Group signatures rely on trusted managers, but for many applications, relying on
a trusted manager is a considerable drawback. The issuing manager has complete
centralized control of the group’s membership. A corrupted issuing manager can
issue credentials at will, and in particular can issue bogus credentials that will
not be traceable to any known identity. Conversely, the manager can revoke
a user at will, with or without legitimate reasons for doing so. Moreover, the
anonymity properties are severely weakened by the fact that the tracing manager
can unmask any signature at its discretion. In the event that the tracing manager
is corrupted, anonymity is completely lost.

In this paper, we answer the following question in the affirmative: Can we
build a group signature scheme that is both traceable and revocable but does
not rely on any centralized trust?

Instead of having a single trusted manager, we replace the manager’s func-
tionality with a distributed (t, n) threshold protocol that is run by a set of
servers. This set could be the group itself, a subset or superset of the group,
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or an entirely independent set that is separate from the group members. More-
over, the tracing manager and issuing manager can themselves be independent
threshold sets and need not be implemented by the same group.

Assume the issuing manager and tracing manager are distributed among a
group of n nodes. In order to perform one of the manager’s services (e.g. accept
a new user, revoke a user’s credentials, or trace a signature), t+1 members must
participate. Any subset of t+1 or more players will be able to perform the service,
whereas a group of t or fewer members are unable to do so. Compromising a
single node will not put the scheme at risk, and malicious actions by the manager
will require the collusion of t+ 1 nodes.

On a technical level, the problem of distributing the tracing manager is far
simpler than distributing the issuing manager. While there have been previous
works that have successfully distributed the tracing manager [9], there are no
traceable group signature schemes with both distributed issuing and tracing, and
this turns out to be a considerably difficult technical challenge. We propose the
first group signature schemes that realize this goal of being fully distributed.

In this paper, we are exclusively interested in succinct group signatures in
which the private key, public key, and signature are all of constant size. In
particular, we do not consider solutions in which the public key and/or signature
size are functions of the size of the group (See Section 1.2 for alternative proposals
that do not fulfill this requirement.)

1.2 Related Work

Chaum and Van Heyst introduced the notion of group signatures in [20]. Fol-
lowing their initial work, many other protocols were presented. For the decade
following their initial paper, the most efficient group signature schemes relied on
the Strong RSA assumption (see Appendix A.3) for their security [1–3, 15, 54].

The initial proposals for group signature schemes often proposed their own
set of definitions, both for desired properties as well as for what it meant to
be secure. These definitions were often overlapping and inconsistent with one
another. In a 2003 paper, Bellare et al. formalized the properties and security
definitions for group signature schemes. They also proposed their own scheme,
which was based on trapdoor permutations and proven secure in the standard
model, but it was not practical [8]. See Appendix B where we recall these formal
definitions of group signature schemes.

Kiayias et al. introduced the notion of traceable signatures [37], a related
primitive in which one simultaneously can revoke the privacy of all signatures
originating from a given user as well as selectively and independently trace their
own signature. Their construction is also based on the Strong RSA assumption.

In concurrent work, Boneh, Boyen, and Shacham (BBS) [10] and Camenisch
and Lysyanskaya (CL) [16] present highly efficient group signature schemes based
on billinear maps, both proven secure in the random oracle model using security
definitions based on the ones given in [8]. While the two schemes are different,
they both were a significant advancement as the signatures in these schemes are
significantly shorter than those based on the Strong RSA assumption. Indeed,
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these two schemes serve as the respective starting points for the two schemes we
present in this paper.

While several previous attempts have been made to eliminate the trusted
center in group signature schemes, no prior scheme has succeeded in building a
fully decentralized scheme. Blomer et al. modify the BBS scheme by replacing
the tracing manager with a (t, n) threshold protocol [9]. However, they do not
address the more difficult technical challenge of distributing the issuing manager,
which is the core contribution of this paper.

Noting the drawback of having trusted group managers, Manulis introduced a
variant of group signatures known as democratic group signatures [46]. In a demo-
cratic group signature scheme, every member of the group can single-handedly
trace signatures. Put another way, there is no anonymity within the group, and
anonymity of signatures is provided only with respect to non-members. More-
over, issuing a new key requires the participation of all n group members, and
the public key is changed in the process. Similarly, removing a member from the
group requires the participation of all remaining group members. Zheng at al.
extend Manulis’s construction to support threshold traceability [55].

We note that democratic group signatures have a very weak notion of anonymity
(as any group member alone can trace a signature) and the schemes in [46, 55]
are not succinct. In particular, the size of both the public key and the signature
is linear in the number of members of the group.

We note that a democratic group signature scheme can be viewed as a special
case of a (t, n) threshold group scheme where the tracing manager is distributed
among the group members such that t = 1 and the issuing manager is distributed
such that t = n. With this generalization in mind, we point out that using our
generalized (t, n) group signature schemes we can instantiate highly efficient
democratic signature schemes as well – i.e. succinct democratic signatures with
short signatures.

Recently Sonnino et al. presented an anonymous credential scheme with a
distributed issuance protocol [53]. Their scheme allows a user to aggregate and
selectively disclose anonymous credentials. Unlike the group signature schemes
considered in this paper, however, their scheme does not support traceability or
revocability.

Also recently, Boneh et al. proposed a post-quantum secure group signature
scheme that is constructed entirely from symmetric key primitives [11] based on
the ZKB++ proof system and the Picnic signature scheme [19, 18]. This scheme
however also relies on a centralized group manager, and it is an open problem
of how to build a fully-distributed post-quantum group signature scheme.

1.3 Our contribution

In Section 4.1, we build a fully distributed group signature scheme based on
BBS. In Section 5, we build a fully distributed version of the CL group signature
scheme.

Anonymous Credentials Our techniques can also be used to build anonymous
credential systems with distributed issuing authorities. In fact our techniques for
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the BBS signature scheme extend to the BBS+ [5] anonymous credential system.
Similarly the techniques for the CL group signature scheme can also be used for
the CL anonymous credential system described in the same paper [16]. As such
our new schemes are alternatives to the CoCoNut scheme in [53]. Details of the
anonymous credential schemes will appear in the final paper.

1.4 Our Approach

As we mentioned earlier in the Introduction, Blomer et al. modify the BBS
scheme by replacing the tracing manager with a (t, n) threshold protocol [9]. We
focus on distributing the issuing manager.

First we point out that the public/secret key pair of the issuing manager in
both BBS and CL schemes can be distributively generated by the player without
the help of a trusted dealer. This can be achieved via a protocol which is based
on [33]. At the end of this protocol each server holds a share wi of the secret key
w such that wi = f(i) mod q where f is a polynomial of degree t and f(0) = w.

The technical complication with sharing the issuing of credentials now comes

from having to jointly compute a value of the form g
1

`(w) (where ` is an affine
function).

This can be done using a classic technique due to Bar-Ilan and Beaver [6]
which requires one multiplication between z = `(w) and a randomly shared
element ρ. If shares are held in polynomial fashion this would require doubling
the degree of the polynomial and at least 2t+1 servers to cooperate to sign (this
approach was followed in [32] when a similar problem arises in the computation
of threshold DSA signatures).

We are interested in a solution that only requires t + 1 servers – the mini-
mal number – to cooperate to issue credentials. Here we use a technique that
originates with Gilboa [35] but has been used several time since (e.g. [30, 36,
40]). The idea is to write the product zρ as the sum of products of secret val-
ues held by the servers. For example if `(w) = z =

∑
zi and ρ =

∑
j ρj , then

zρ =
∑
ij ziρj , and then each pair of players Pi, Pj engages in a share conversion

protocol which on input zi, ρj respectively returns values aij to Pi and bij to Pj
such that aij + bij = ziρj . This in turn would allow the players to hold additive

shares of zρ and eventually compute g
1

`(w) .
Our protocols are proven secure against a malicious adversary who controls

up to t players. Since we only assume that n ≥ t+ 1 (i.e. dishonest majority) we
can only guarantee that the protocol either terminates with the correct solution
or aborts.

Security for the distributed BBS scheme is proven via a full simulation ar-
gument, where the view of the adversary can be efficiently simulated without
knowledge of the input of the honest players. To that extent we present two pro-
tocols, both fully simulatable, which present a tradeoff between efficiency and
security assumptions.

The security of the distributed CL scheme is proven in a weaker game-based
definition where we prove that an adversary controlling only t players cannot
issue new credentials.
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2 Preliminaries

2.1 Communication model

We assume a group of n members which are connected via a complete network
of point-to-point channels, as well as a broadcast channel. We assume that the
network is partially synchronous.

2.2 Adversarial model

We prove security against a adversary, who may corrupt up to t players. We
assume a possible dishonest majority, and thus the only restriction on t is t ≤
n. We assume static corruptions, meaning the adversary must choose at the
beginning of the protocol which players to corrupt.

The view of the adversary is comprised of all private information and state
held by the corrupted players as well as the public view of the protocol. We
assume a malicious adversary who may arbitrarily deviate from the protocol.
We also assume a rushing adversary, meaning that the honest players speak
last and, in particular, may choose their response adaptively after seeing the
adversaries messages.

2.3 Group signatures

We refer the reader to [8] for the formal definition of group signatures. We point
out that in [10] the BBS scheme described below is proven secure according to
the definitions in [8].

In this paper, we don’t engage directly with these security definition as we
use a simulation argument to prove security based on the assumed security of
the BBS scheme (which is itself proven secure using the definitions of [8]). We
prove that our threshold credential issuing protocol is simulatable and therefore
inherits all the security properties of the original BBS scheme. Moreover, for
threshold traceability, we rely on the simulatable threshold decryption scheme
in [9] for BBS (see Section 4.5) and on the Canetti Goldwasser cryptosystem for
CL (see Section 5.4).

For completeness, we include the formal requirements for a group signature
schemes as well as the formal security definitions from [8] in Appendix B.

2.4 Threshold Secret sharing

Threshold secret sharing is a method of distributing a secret to n participants
(commonly called players) with a specified threshold t such that t + 1 players
can jointly reconstruct the secret, whereas t or fewer players cannot. The most
prominent threshold secret sharing scheme is due to Shamir [52]. In Shamir’s
scheme, the secret shares are points on a degree t polynomial:

p(x) = σ + a1x+ a2x
2 + · · ·+ atx

t mod q
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Let each player Pi be associated with a unique public index zi (commonly
zi = i). Then Pi’s share of the secret σ is p(zi).

Any group of t + 1 players can reconstruct the secret via Lagrange interpo-
lation.

2.5 Verifiable Secret Sharing

A verifiable secret sharing (VSS) scheme has the additional property that players
can independently verify the validity of their share, meaning that ant t+1 players
will reconstruct the same unique secret. Again, let the secret be defined by the
polynomial

p(x) = σ + a1x+ a2x
2 + · · ·+ atx

t mod q

and assume that a dealer D is distributing shares of this secret. In Feldman’s
scheme, D distributes vi = gai in G for each i ∈ [1, t] as well as v0 = gσ, where
G denotes a cyclic group and g denotes an element of G. Player Pi uses these
values to check the validity of its share σi by calculating:

gσi
?
=

t∏
j=0

vzi
j

j in G

If any player finds that the above equation does not hold, then that player
complains and the protocol terminates. The original Feldman system assumes
an honest majority and in the case where a (minority of) player(s) raised a
false complaint, it allows for recovery. However, in this paper we are assuming
a dishonest majority and recovery therefore may not be possible. Instead the
protocol aborts if any player raises a complaint.

Feldman’s scheme is not information theoretically secure, and indeed it clearly
leaks gσ. However, it can be shown via simulation argument that it does not leak
any other information. We omit the simulation details here, but briefly it involves
Lagrange interpolation in the exponent by which given just gσ and the shares
of t corrupted player, one can recover all other published information in the
protocol.

2.6 Commitment Schemes

A trapdoor commitment scheme allows a sender to commit to a message with-
out revealing any information about the committed message. In other words, a
receiver who possesses a transcript of the commitment exchange cannot guess
the committed message any better than random, even if the receiver has infinite
computational power. However, the scheme’s trapdoor makes it possible to open
the commitment. A proper implementation will have a hard-to-compute trap-
door, but if a user has knowledge of the trapdoor, then that user can open the
commitment. We call this type of scheme equivocable.

A non-interactive trapdoor commitment scheme typically has four algorithms,
described below:
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– KG denotes the key generation algorithm. It receives the security parameter
as input and outputs a pair pk, tk where pk is the public key associated with
the commitment scheme and tk is the trapdoor.

– Com denotes the commitment algorithm. It receives input pk and message M
and outputs [C(M), D(M)] = Com(pk,M,R), where R denotes coin tosses.
C(M) refers to the commitment string, and D(M) refers to the decommit-
ment string. The latter remains secret until opening takes place.

– Ver denotes the verification algorithm. It receives as input C, D, and pk and
outputs a message M if verification succeeds or ⊥ if it fails.

– Equiv denotes the equivocation algorithm that opens the commitment to
any selected message if given the trapdoor. It takes as input pk, M , R with
[C(M), D(M)] = Com(pk,M,R), a message M ′ 6= M , and a string T . If
T = tk, then the algorithm outputs D′ such that Ver(pk, C(M), D′) = M ′.

If the sender refuses to open a commitment, we can setD = ⊥ and Ver(pk, C,⊥) =
⊥. A trapdoor commitment scheme has the following properties:

Correctness If [C(M), D(M)] = Com(pk,M,R), then Ver(pk, C(M), D(M)) =
M .

Information Theoretic Security For every message pair M , M ′, the distri-
butions C(M) and C(M ′) are statistically close.

Secure Binding Adversary A wins if it produces C, D, and D′ such that
Ver(pk, C,D) = M , Ver(pk, C,D′) = M ′, and M 6= M ′. To achieve secure
binding, any efficient A should have a negligible probability of winning with
respect to the security parameter.

Given a commitment C to messages m, if no adversary A can produce another
commitment C ′ after seeing the opening of C to m and successfully decommit
to a related message m′, then the commitment achieves non-malleability [24,
25]. For the purposes of this paper, the non-malleable commitment scheme must
have concurrent security, meaning that security must hold when the adversary
has seen multiple commitments. Multiple schemes offer this level of security [22,
29, 44]. Alternatively, an implementation can use a secure hash function H to
define the commitment to x as h = H(x, r) for a uniformly-chosen r of length
λ. H acts as random oracle in this version.

2.7 Paillier’s Encryption Scheme

An additively homomorphic encryption scheme E is an encryption scheme that
has the additional property that it is homomorphic modulo an integer N . Let
Epk(·) denote the case the encryption algorithm using public key pk. Additive
homomorphism means that given two ciphertexts c1 = Epk(a) and c2 = Epk(b),
there is an efficiently computable operation ⊕ such that

c1 ⊕ c2 = Epk(a+ b mod N)

Repeating this addition operation naturally gives rise to a corresponding
scalar multiplication operation ⊗, by which a ciphertext can be multiplied by a
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scalar. Given an integer s ∈ ZN and a ciphertext c = Epk(a), then

c⊗ s = Epk(as mod N)

Informally, an additively homomorphic encryption scheme E achieves seman-
tic security if an adversary cannot distinguish between the probability distri-
butions of the encryptions of any two messages. In this paper, we rely on an
additively homomorphic encryption scheme. We instantiate our protocols with
Paillier’s scheme [47], although in principle any additively homomorphic encryp-
tion scheme will work.

We now provide the details of the Paillier encryption scheme:

– Key-Gen:

• choose two large primes P , Q of equal length
• calculate N = PQ
• calculate λ(N) = lcm(P − 1, Q− 1)
• choose Γ ∈ Z∗N2 such that it has an order that is a multiple of N
• output public key (N,Γ ) and secret key λ(N)

– Encryption on input message m ∈ ZN :

• choose x ∈R Z∗N
• output c = ΓmxN mod N2

– Decryption on input c ∈ ZN2 :

• let L denote a function defined over the set {u ∈ ZN2 : u = 1 mod N}
where L(u) = (u− 1)/N

• output L(cλ(N))/L(Γλ(N)) mod N

– Homomorphic Properties: Given two ciphertexts c1, c2 ∈ ZN2 such that ci =
E(mi), define c1 ⊕ c2 = c1c2 mod N2 and c1 ⊕ c2 = E(m1 + m2 mod N).
Likewise, given a ciphertext c = E(m) ∈ ZN2 and a number a ∈ Zn, define
a⊗ c = ca mod N2 = E(am mod N).

Paillier relies on the N -decisional composite residuosity assumption (DCRA)
to prove its security [47]. Briefly, this assumption says that a distinguisher cannot
distinguish between random N -residues and random group elements in Z∗N2 .

3 Multiplicative-to-additive share conversion protocol

Assume that we have two parties Alice and Bob with associated public keys
A = ga and B = gb and respective secret keys a, b ∈ Zq (where g is the generator
of a group G of prime order q). Consider the Diffie-Hellman transform of the two
public keys X = gx with x = ab mod q. We can think of a, b as multiplicative
shares of x = ab mod q.

Alice and Bob would like to compute secret additive shares α, β of x, that is
random values such that α + β = x = ab mod q with Alice holding α and Bob
holding β. Moreover Alice’s and Bob’s output should also include the values
Â = gα and B̂ = gβ .
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Here we show a protocol based on an additively homomorphic scheme which
has appeared many times before in the literature (e.g. [23, 30, 35, 36, 38, 40, 43]
but that we adapt to our needs.

In our protocol we enforce that Alice and Bob use the correct values via
a ZK proof. Moreover we assume that Alice and Bob have “registered” their
public keys by at some point proving possession of the associated secret key via
a zero-knowledge proof of knowledge.

We assume that Alice is associated with a public key EA for an additively
homomorphic scheme E over an integer N . Slightly abusing notation we denote
with c = EA(m) the encryption of m (with random uniform coins) and with
DA(c) the value that results by decrypting c. Let K > q also be a bound which
will be specified later.

In the following we will refer to this protocol as MtAwc (for Multiplicative to
Additive with checks) share conversion protocol.

1. Alice initiates the protocol by
– sending cA = EA(a) to Bob
– proving in ZK that DA(cA) < K and gDA(cA) = A

2. Bob computes the ciphertext cB = b⊗ cA ⊕EA(β′) = EA(ab+ β′) where β′

is chosen uniformly at random in ZN . Bob sets his share to β = −β′ mod q.
He responds to Alice by
– sending cB and B̂ = gβ

– proving in ZK that he knows b, β such that B = gb, b < K, B̂ = gβ ,
cB = b⊗ cA ⊕ EA(β′), and β = −β′ mod q

3. Alice decrypts cB to obtain α′ = DA(cB). She sets her share to α = α′ mod q
and reveals Â = gα.

4. Both parties check that Â · B̂ = gab which Alice (resp. Bob) can compute as
Ba (resp. Ab) and abort if that does not hold.

Correctness. Assume N > K2q and that neither party aborts during the
protocol. Then note that Alice decrypts the value α′ = ab + β′ mod N . Note
that if β′ < N − ab the reduction mod N is not executed. Conditioned on this
event, the protocol correctly computes α, β such that α+ β = x mod q.

Since ab ≤ K2 and N > K2q we have that β′ ≥ N − ab with probability at
most 1/q (i.e. negligible).

Simulation of Bob. If the adversary corrupts Alice, then Bob’s message can
be simulated without knowledge of its input b. We sketch here how a simulator
for Bob will work. First of all we assume that the simulator knows a since it can
extract it from the proof of knowledge during the registration phase. Then the
simulator can set cB = E(α′) for α′ ∈R ZN and set B̂ = Ba · g−α′ (and simulate
the ZK proof of correctness w.r.t. B). The distribution of the message decrypted
by Alice in this simulation is close to that of the message decrypted when Bob
uses the real b, because

– the value a sent encrypted by Alice is smaller than K due to the ZK proof
– the “noise” β′ is uniformly distributed in ZN > K2q
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so the distribution of α′ is statistically close to the uniform one over ZN in both
the real and simulated executions.

Simulation of Alice. If the adversary corrupts Bob, then Alice’s message
can be simulated without knowledge of its input a. Indeed a simulator can just
choose a random a′ ∈ Zq and act as Alice (simulating the ZK proof of correct-

ness w.r.t. A). Moreover the simulator can set Â = AbB̂−1 (as before we assume
that the simulator knows b since it can extract it from the proof of knowledge
during the registration phase). In this case the view of Bob is computationally
indistinguishable from the real one due to the semantic security of the encryp-
tion scheme E . Note that the simulation of Alice does not require knowledge of
the secret key of her encryption scheme (otherwise the reduction above to the
semantic security of E could not be carried out).

Remark. On the ZK proofs and the size of the modulus N . For the ZK proofs
required in the protocol we use simplified versions of similar ZK proofs presented
in [43] and already used in [31]). These protocols are presented in the Appendix.

These are ZK arguments with security holding under the Strong RSA As-
sumption. Moreover they require K ∼ q3 which in turn require N > q7 which in
practice is not an issue.

3.1 Removing the ZK Proofs

In the above MtAwc protocol, the ZK proofs are the most expensive step of the
protocol because they require the prover to prove a “complicated” statement
about secrets which operate modN when encrypted while the result has to be
valid mod q.

We now present a protocol which removes the expensive ZK proofs and re-
places them with simple proofs of knowledge of certain discrete logarithms (these
proofs of knowledge are not required for the security of the “standalone” proto-
col when run by itself, but will be useful to prove the security of our threshold
issuing protocol). These proofs can be implemented much more efficiently using
a variant of Schnorr’s proof [51]. Throughout, when we refer to Schnorr-style
proofs, we require our proofs to be concurrently extractable so we instantiate
Schnorr’s proof with Fischlin’s [27] transformation in place of Fiat-Shamir.

This gain in efficiency is offset by requiring additional computational assump-
tion to prove the security of the protocol, as we discuss below.

In the following we will refer to this protocol as MtA (for Multiplicative to
Additive) share conversion protocol.

Registering the Public Keys. In the MtAwc protocol we made the assump-
tion that Alice and Bob proved knowledge of a, b respectively during a prior
registration phase. For the security of MtA we need to also require that during
this phase, Alice proves knowledge of the secret key DA of her encryption key
EA. This would allow us to assume that the simulator for Bob knows DA since
it could have extracted it during a simulation of the registration phase. Jumping
ahead, this will happen in the distributed key generation phase of our protocol.
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Input Distribution. We also assume that the inputs a, b are drawn from the
uniform distribution in Zq (this requirement was not needed in MtAwc, but it is in
any case satisfied by our application of threshold issuance of group credentials).

1. Alice initiates the protocol by
– sending cA = EA(a) to Bob

2. Bob computes the ciphertext cB = b⊗ cA ⊕EA(β′) = EA(ab+ β′) where β′

is chosen uniformly at random in ZN . Bob sets his share to β = −β′ mod q.
He responds to Alice by
– sending cB and B̂ = gβ

– proving in ZK that he knows β such that B̂ = gβ

3. Alice decrypts cB to obtain α′ = DA(cB). She sets her share to α = α′ mod q.
She checks that gα ·B̂ = Ba. If the check fails she aborts and stops. Otherwise
she sends to Bob Â = gα.

4. Bob checks that Â · B̂ = Ab and abort if that does not hold.

It is easy to see that if the players are honest the protocol is correct. We
now describe the simulation first for Bob and then for Alice. In each case, before
we describe how to simulate the above protocol we first point out where the
simulation strategy for MtAwc fails in this case.

Simulation of Bob. If Alice is corrupted, in the previous simulation of MtAwc
the Bob-simulator encrypted a random α′ ∈ ZN and published B̂ = Bag−α

′

guaranteeing that the view of Alice is compatible with a protocol that success-
fully completes. But this is OK because we know that (i) Alice really encrypted
a small number (so there is no reduction mod N) and (ii) Alice really encrypted
logg A (so the output of Bob’s step is correct). However we don’t have this guar-
antee in MtA. Indeed a malicious Alice could encrypt a large number and the
probability of wrapping mod N depends on the size of Bob’s input which is not
available to the simulator. So in this new simulation we use knowledge of Alice’s
decryption key to approximate the distribution of α′ as described below.

Remember that the Bob-simulator knows a and DA Alice’s decryption key
(since it can extract both from the proofs of knowledge during the registration

phase). The simulator chooses a random b̂ ∈ Zq and sets α′ = b̂ ·D(cA) + β′ for

β′ ∈ ZN and returns cB = E(α′) and B̂ = Ba ·g−α′ . Note that in this simulation
the message that Alice decrypts might be reduced mod N and her check that
gDA(cB) · B̂ = Ba might fail, as in the real protocol. The only difference with
the real protocol is that Bob uses the real b = logg B to multiply Alice’s value,

while the simulator uses a random b̂.
Notice, however, that the simulation is indistinguishable from the real one.

For any two messages m0,m1 ∈ ZN and for β ∈R ZN , it is clear that m0 +
β mod N and m1 + β mod N are identically distributed. In particular then,
letting m0 = b · a mod N and m1 = b̂ · a mod N , it is clear that the value
that Alice decrypts is identically distributed in the real protocol and in the
simulation.

Simulation for Alice. If the adversary corrupts Bob, the simulation in the
previous case proceeds with the simulator encrypting a random value and relying



Fully Distributed Group Signatures 13

on the semantic security of EA. However in our simplified protocol, Alice checks
Bob’s behavior by performing a test on the decryption of cB a ciphertext pro-
vided by the possibly malicious Bob. This turns Alice into a form of decryption
oracle, and simple semantic security is not sufficient anymore. Moreover we can’t
use a CCA2-secure encryption scheme [25] because we need E to be additively
homomorphic.

In our simulation we assume that we are given access to an oracleOcA(cB , b, β)
which answers 1 if and only if Dec(cB) = b ·Dec(cA) + β mod q. Since the sim-
ulator can extract b, β from the malicious Bob’s proof of knowledge, then the
simulator can query OcA(cB , b, β) and accepts if the oracle answers 1.

Security cannot be based on the semantic security of EA anymore since the
presence of the oracle immediately implies that EA is not semantically secure
anymore. However consider the following experiment:

– Generate a key (E,D)
– Generate two random values a0, a1 ∈R Zq and publish A = ga0

– Choose a random bit b and publish c = E(ab)
– Let b′ be the output of the adversary who is allowed restricted access to

the oracle O – by restricted we mean that the oracle will stop working
after it outputs 0.

Assumption 1 We say that the Enc-ECR assumption holds if for every PPT
adversary, the probability that b = b′ is negligible.

Under the Enc-ECR assumption we can prove that no adversary given ga0

can distinguish if the MtA protocol was run with a0 or a1 (with both values
being “high entropy” in particularly randomly chosen) which is what’s needed
to complete the simulation above.

We note that our Enc-ECR assumption is a generalized version of the Paillier-
ECR assumption introduced in [30] just for Paillier’s encryption (we stated it for
any additively homomorphic encryption E). It is a weaker version of the Paillier-
EC assumption in [38] shown to be false in [39] (the extended version of [38]). In
the latter the oracle access is not restricted, which makes the assumption much
stronger. In our case it is sufficient to consider the restricted oracle since the
real protocol stops if Alice detects cheating. This variation prevents the attack
shown in [39] to complete successfully, and indeed no attack is currently known
on the ECR assumption.

4 Fully distributed group signatures from BBS

In this section, we present a fully distributed variant of the BBS group signature
scheme [10]. We begin by recalling the details of the BBS group signature scheme
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(Section 4.1) and then proceed to show how the issuing manager can be replaced
by a (t, n) threshold protocol using the MtAwc protocol as a primitive (Section
4.2). We then prove the security of the threshold issuing protocol by reducing
it to the security of the centralized BBS signature scheme (Section 4.3). Next,
we show how we can realize a simpler protocol by replacing the more expensive
MtAwc with the lightweight MtA protocol (Section 4.4). Finally, we recall how
the tracing manager can also be distributed in a straightforward manner and
present other extensions to our protocol (Section 4.5).

4.1 The BBS group signature scheme

We now provide a detailed description of the BBS group signature scheme [10].
Let (G1, G2) denote a bilinear group pair of order q generated by g1, g2 re-
spectively. Let ψ denote a computable isomorphism from G2 to G1, such that
ψ(g2) = g1. Let e : G1×G2 → GT denote a non-degenerate, bilinear map, where
bilinearity and non-degeneracy have the following definitions:

– Bilinearity: for all z1 ∈ G1, z2 ∈ G2, and d1, d2 ∈ Z, e(zd11 , z
d2
2 ) =

e(z1, z2)d1d2

– Non-degeneracy: e(g1, g2) 6= 1

Also, let H : {0, 1}∗ → Zp denote a hash function which will be modeled as a
random oracle.

– Key-Gen On input n, the number of members in the group,
• choose generator g2 ∈R G2

• compute g1 = ψ(g2)
• Issuing Secret Key: choose γ ∈R Z∗q
• Issuing Public Key: w = gγ2
• Tracing Private Key: choose ξ1, ξ2 ∈R Z∗q
• Tracing Public Key choose h ∈R G1 \ {1G1} and compute u, v ∈ G1 such

that uξ1 = vξ2 = h
• output the group public key gpk = (g1, g2, h, u, v, w) and the group pri-

vate key gmsk = (γ, ξ1, ξ2)

– Issue Credential: For every user U : choose x ∈R Zp and set A = g
1

x+γ

1 . The
user secret key is skU : (A, x).

– Sign On input gpk, skU , and message M ∈ {0, 1}∗, the user U
• Encrypts A: choose α, β ∈R Zq and compute T1 = uα, T2 = vβ , T3 =
Aih

α+β ;
• Proves in ZK that encryption is correct:
∗ computes δ1 = xiα, and δ2 = xiβ
∗ choose rα, rβ , rx, rδ1 , rδ2 ∈R Zq
∗ compute R1 = urα , R2 = vrβ , R3 = e(T3, g2)rx · e(h,w)−rα−rβ ·
e(h, g2)−rδ1−rδ2 , R4 = T rx1 · u−rδ1 , and R5 = T rx2 · v−rδ2

∗ compute c = H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zq
∗ compute sα = rα + cα, sβ = rβ + cβ, sx = rx + cxi, sδ1 = rδ1 + cδ1,

and sδ2 = rδ2 + cδ2
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• Output σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2)

– Verify On input gpk, M , and σ,

• compute R̃1 = usα , R̃2 = vsβ · T−c2 , R̃3 = e(T3, g2)sx · e(h,w)−sα−sβ ·
e(h, g2)−sδ1−sδ2 · (e(T3, w)/e(g1, g2))c, R̃4 = T sx1 · u−sδ1 , and R̃5 = T sx2 ·
v−sδ2

• Accept if c = H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5)

– Trace On input gpk, gmsk, M , and σ,

• verify that σ is valid on M

• Decrypt A: compute A = T3/(T
ξ1
1 · T

ξ2
2 )

• use Ai to identify the signer

4.2 Distributing the issuing manager

We now describe our threshold protocol for distributing the BBS issuing man-
ager. This consists of two protocols: one for the generating the master issuing
key and then a second protocol for using that distributed master key to issue
keys to group members (or players).

The players run on input G1, G2, G3, g1, g2, e. The private issuing key is γ ∈r
Z∗p . The public key is w = gγ2 . We also assume that each player Pi is associated
with a public key Ei for an additively homomorphic encryption scheme E . In our
instantiation, we will use Paillier, but in principle any additively homomorphic
encryption scheme will work.

First (in Section 4.2.1) we describe the protocol for generating the issuing key
pair in a distributed manner. Then (in Section 4.2.2) we present the protocol
to issue credentials to users in a distributed threshold fashion.

4.2.1 Issuing key generation protocol

– Round 1. Each Player Pi selects ui ∈R Zq; computes [KGCi,KGDi] =
Com(gui1 ) and broadcasts

• KGCi
• Ei, their public Paillier key

– Round 2. Each Player Pi broadcasts KGDi. Let wi be the value decommitted
by Pi (i.e. for honest players, wi = gui). The player Pi performs a (t, n)
Feldman-VSS of the value ui, with wi as the “free term in the exponent”

The public key is set to w =
∏
i wi. Each player adds the private shares

received during the n Feldman VSS protocols. The resulting values γi are
a (t, n) Shamir’s secret sharing of the secret key γ =

∑
i ui. Note that the

values Γi = gγi1 are public.

– Round 3 Let Ni = piqi be the RSA modulus associated with Ei. Each player
Pi proves in zero knowledge that he knows γi using Schnorr’s protocol [51]
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4.2.2 Issuing signing keys

Recall that a user U ’s credential in the BBS group signature scheme is a private

signing key (x,A), where A = g
1

γ+x

2 . Recall moreover that when user U signs,
he will encrypt (x,A) (under the tracing manager public key) and prove in ZK
that it is a valid credential (i.e. that e(gx1w,A) = e(g1, g2))

Note that at the time of signing in order to maintain anonymity, both xi and
Ai must remain private. However, there is no need for the mapping between the
user’s identity U and (x,A) to be private, and indeed we will need the mapping
to be public in order for the scheme to be traceable. We assume that each player
chooses and publishes a value xi ∈ Z∗p that will be used as its identity in the
protocol.

We now describe the protocol for issuing credentials to users with which
they can sign messages. The issuing protocol is a t-out-of-n threshold protocol.
In particular, the issuing key is shared among n players using (t, n) Shamir
secret sharing. In order to issue shares to a new player, t + 1 of these players
must participate. As in the centralized BBS scheme, let H : {0, 1}∗ → Zp denote
a hash function which will be modeled as a random oracle.

Let S ⊆ [1..n] be the set of players participating in the key issuance protocol.
We assume that |S| = t′ where t < t′ ≤ n. During the key issuing protocol, we
can share any ephemeral secrets using a (t′, t′) secret sharing scheme, and do
not need to use the general (t, n) structure.

We note that using the appropriate Lagrangian coefficients λi,S each player
in S can locally map its own (t, n) share γi of γ into a (t′, t′) share zi = λi,Sγi
of γ, i.e. γ =

∑
i∈S zi. Since Γi = gγi1 and λi,S are public values, all the players

can compute Zi = gzi1 = Γ
λi,S
i .

When a user requests a credential he submits x′ ∈ Zp to the players who
jointly compute x = H(x′) and then compute A. Note that we do not allow the
user to choose x directly but instead we use H(x′) so that x is randomly chosen
in the random oracle model. This is to be consistent with the centralized BBS
scheme, in which the issuing manager randomly chooses x ∈ Zp but the users
do not have freedom over the choice of x.

Let s = γ + x. Since x is public, each player Pi can use zi to produce si, a
share of s = γ + x and everyone can compute Si = gsi1 .

– Phase 1. Each Player Pi selects ρi ∈R Zp; computes [Ci, Di] = Com(gρi2 ) and
broadcast Ci.

– Phase 2. Each Player Pi broadcasts Di. Let Ωi be the values decommitted by
Pi who proves in ZK that he knows ρi s.t. Ωi = gρi2 using Schnorr’s protocol
[51].
The players compute

Ω = [
∏
i∈S

Ωi] = gρ2

where ρ =
∑
i∈S ρi. Note that

sρ =
∑
i,j∈S

siρj mod p
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– Phase 3. Every pair of players Pi, Pj engages in the following multiplicative-
to-additive share conversion subprotocol. Notice that since each player will
play both roles, every pair of players will actually engage in two MtAwc
subprotocols of the following form:

Pi, Pj run MtA with shares si, ρj respectively. Let αij [resp. βij ] be the
share received by player Pi [resp. Pj ] at the end of this protocol, i.e.

siρj = αij + βij

Player Pi sets τi = siρi +
∑
j 6=i αij +

∑
j 6=i βji. Note that the τi are a

(t′, t′) additive sharing of sρ =
∑
i∈S τi

Note that at the end of this phase the values Si = gsi1 , Ωi = gρi2 , Âij = g
αij
2

and B̂ij = g
βij
2 are public.

– Phase 4. Every player Pi sends τi and the entire transcript of the protocol to
the user U . The user can check if τi is correct since Ti = gτi2

∏
j 6=i Â

−1
ij

∏
j 6=i B̂

−1
ji

should be equal to gsiρi2 which can be checked via the bilinear map, i.e. by
checking that e(g1, Ti) = e(Si, Ωi). If some check fails, the user aborts. Oth-
erwise he reconstructs τ =

∑
i∈S τi = ρs = ρ(γ + x) and τ−1 mod p and

A = Ωτ
−1

= (g
1

γ+x

2 )

4.3 Proof of Security

We prove security according to the simulation paradigm. We show that there
exists a simulator that without knowing the input of the honest players can
produce a view for the adversary that is indistinguishable from the real protocol.
Because we are in the dishonest majority case we use “simulation with abort”
where there is no guarantee that the honest players will receive the output of
the computation due to aborts.

For the key generation protocol we prove that the protocol can be simulated
for any randomly chosen public key w. This guarantee that if the real protocol
does not abort then the distribution of the public keys generated by our threshold
protocol is the same as the distribution of the centralized BBS scheme.

For the credential issuing protocol, similarly, we prove that the simulator
given the output (x,A) of the centralized BBS issuing algorithm will generate a
indistinguishable view that results in (x,A) as the output.

Theorem 1. Assuming that

– The Strong RSA Assumption holds;
– KG, Com, Ver, Equiv is a non-malleable equivocable commitment scheme;

Our threshold credential issuing protocol is simulatable.

We assume that the adversary controls players P2, . . . , Pt+1 and that P1 is
the honest player. We point out that because we use concurrently non-malleable
commitments (where the adversary can see many commitments from the honest
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players) the proof also holds if the adversary controls less than t players and
we have more than 1 honest player. So the above assumption is without loss of
generality.

Because we are assuming a rushing adversary, P1 always speaks first at each
round. Our simulator will act on behalf of P1 and interact with the adversary
controlling P2, . . . , Pn. Recall how A works: it first participates in the key gen-
eration protocol to generate a public key w for the threshold scheme. Then it
requests the group of players to issue credentials to several users which result in
running the protocol on inputs x1, . . . , x`, and the group engages in the signing
protocol on those messages.

4.3.1 Simulating the key generation protocol

We need to prove that the key generation protocol results in a public key w
which is uniformly distributed in G1. So the simulator S will run on input
w = gγ sampled uniformly over G1 and will produce a simulation that outputs
w or aborts.

The simulation Sim-Key-Gen is described below, where S plays the role of P1.
S also runs on input a public key E for which he does not know the matching

secret key (this is necessary for when we have to make a reduction to the semantic
security of the Paillier encryption scheme).

Simulation:

– S (as P1) selects a random value u1 ∈ Zq, computes [KGC1,KGD1]=
Com(gu1

1 ) and broadcasts KGC1.A broadcast commitments KCGi for i > 1;
– Each player Pi broadcasts KGDi; let wi be the decommitted value and the

accompanying Feldman-VSS (S will follow the protocol instructions). Each
player broadcasts Ei. S broadcasts E1 = E.

– Let yi the revealed commitment values of each party. S rewinds the adversary
to the decommitment step and
• changes the opening of P1 to ˆKGD1 so that the committed value revealed

is now ŵ1 = w ·
∏n
i=2 y

−1
i .

• simulates the Feldman-VSS with free term ŵ1

– The adversary A will broadcasts ˆKGDi. Let ŵi be the committed value
revealed by A at this point (this could be ⊥ if the adversary refused to
decommit).

– The players compute ŵ =
∏n
i=1 ŵi (set to ⊥ if any of the ŵi are set to ⊥ in

the previous step).
– The players perform the proofs of knowledge for their secret keys γi, pi, qi.

The simulator S will simulate these proofs for P1, and extract the values
γi, pi, qi for i > 1).

The only differences between the real and the simulated views is that P1 runs
a simulated Feldman-VSS with free term in the exponent ŷ1 for which it does
not know the discrete log. But we have shown in Section 2.5 that this simulation
is identically distributed from the real Feldman-VSS. So the simulation of the
protocol is perfect.
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If the simulation does not abort, then it terminates with output w except with
negligible probability. This is a consequence of the non-malleability property of
the commitment scheme. Indeed, if A correctly decommits KGCi twice it must
do so with the same string, no matter what P1 decommits too (except with
negligible probability)4. Therefore ŵi = wi for i > 1 and therefore ŵ = w.

4.3.2 Simulating the issuing protocol

We point out that S does not know the secret values associated with P1: its
correct share s1 of the secret key, and the secret key of its public key E1. The
latter is necessary in order to reduce unforgeability to the semantic security of
the encryption scheme. However S knows the secret keys of all the other players,
and their shares sj . It also knows the “public key” of P1, S1 = gs1 from the
simulation of the key generation protocol.

In the following simulation S aborts whenever the protocol is supposed to
abort.

On input x the protocol should terminate with either A = g
1

γ+x

2 or abort.
The simulator chooses a random value τ ∈ Zq and sets Ω = Aτ ∈ G2.

– Phase 1 All the players execute the protocol by broadcasting Ci (S runs the
protocol correctly for P1).

– Phase 2
• Each player Pi broadcasts KGDi; let Ωi be the decommitted value of

each player.
• S rewinds the adversary to the decommitment step and changes the

opening of P1 to ˆKGD1 so that the committed value revealed is now
Ω̂1 = Ω ·

∏n
i=2Ω

−1
i .

• Because of non-malleability A must open with the same Ωi or the sim-
ulation aborts.

• The players prove knowledge of ρi such that Ωi = gρi . S extracts the
values ρi (for i > 1) and simulates the proof for P1.

Note that S does not know ρ1 s.t. Ω̂1 = gρ12 .
– Phase 3 All the players execute the MtAwc protocol for s and ρ.
S runs the simulation for P1 since it does not know s1, ρ1.
More specifically, when P1 interacts with Pi on input s1, ρi, S will run the
“Alice simulation”. Note that in this case S can extract β1i, the output share
for Pi, from his ZK proof of knowledge.
When P1 interacts with Pi on input si, ρ1, S will run the “Bob simulation”.
Note that in this case S knows the output share αi1 for Pi since S sets it as
a random element in ZN .
The bottom line is that at this point in the simulation S knows τA =

∑
i>1 τi

the sum of the values that the adversary should broadcast in the next round.
Indeed

τA =
∑
i,j>1

siρj +
∑
i>1

αi1 +
∑
i>1

β1i

4 This property is actually referred to as independence. Introducedin [34] as a stronger
version of non-malleability, it was later proven equivalent in [12].
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and S knows all the values on the right end side of the equation.

S sets τ1 = τ − τA. If the simulation has not aborted up to this point then
it is not hard to verify that e(g1, T1) = e(S1, Ω̂1) as required.

– Phase 4. Every player Pi sends τi to U . If all the τi are correct U reconstructs

Ωτ
−1

= A = (g
1

γ+x

2 )

The only difference between the real and the simulated execution is that we
are running the simulation of the MtAwc protocol, which we have shown to be
indistinguishable from real executions under the semantic security of E .

The indistinguishability of the simulation is also predicated on the sound-
ness of the ZK proofs (implied by the Strong RSA Assumption), and the non-
malleability of the commitment scheme.

4.4 A Simplified Protocol

To improve the efficiency of the protocol, we replace the MtAwc protocol with the
simpler MtA one. Recall that the latter requires that the inputs are randomly
distributed (which is true in our case since the inputs are the local shares si
and ρi) and that the users have proven knowledge of the secret keys of their
additively homomorphic encryption scheme.

Therefore we also modify the Issuing Key Generation Protocol by requiring
that each player proves knowledge of Di (in the case of Paillier this can be done
by proving knowledge of the factorization of Ni via a protocol such as [48]).

Theorem 2. Assuming that

– The Enc-ECR and Dlog-ECR Assumptions hold;

– KG, Com, Ver, Equiv is a non-malleable equivocable commitment scheme;

Then our simplified threshold credential issuing protocol is simulatable.

The proof follows the same lines of the proof of Theorem 1 except that we
replace the simulation of MtAwc with the simulation of MtA.

4.5 Additional properties

As we mentioned in the introduction, in order to be fully distributed, we need to
build threshold protocols for traceability and revocation as well. Although the
main technical challenge towards building a fully distributed group signature
scheme is thresholding the issuing manager, for completeness, we recall how
the other aspects of the protocol can also be thresholdized in a straightforward
manner.
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4.6 Threshold Traceability

As we discussed in Section 4.1 in the BBS group signature scheme a user secret
key (x,A) can be thought of as a signature A on the message x under the
group manager’s issuing key. To sign, the user encrypts this key under a linear
encryption scheme and proves in ZK that the signature is valid.

The key under which the signature is encrypted is held by the group tracing
manager who can de-anonymize a signature by simply decrypting the secret key.

The linear encryption used in the BBS scheme is a variation of the ElGamal
encryption scheme [26] that works in groups which admits bilinear maps (on
these groups ElGamal encryption cannot be used since the Decisional Diffie-
Hellman assumption does not hold).

The decryption procedure for the linear encryption scheme is a simple ex-
ponentiation and therefore can be easily distributed and indeed this has been
presented in [9].

4.7 Revocation

If a user abuses his roles or has her key compromised, the group may decide to
revoke her key. In the BBS paper [10] a simple revocation scheme is described
which is easily adapted to our distributed scenario.

In the BBS revocation scheme when the issuing manager wants to revoke a

key (x,A) (with A = g
1

x+γ

1 ) the manager has to compute A∗ = g
1

x+γ

2 which can
be done in a distributed fashion in the same way we compute A.

This is a feature of our protocol as a user can be revoked only if a threshold
of issuing managers agrees on that, preventing abuses of revocation power.

4.8 Exculpability

In [4, 8] exculpability for group signatures is informally defined as follows: no
member of the group, not even the group tracing manager, can produce signa-
tures on behalf of the group. Strong exculpability means that not even the group
issuing manager can sign on behalf of a user.

The BBS scheme is naturally exculpable, but in the centralized scheme it
is not strongly exculpable. We first point out that by distributing the power of
the issuing manager among several servers we provide an intermediate form of
exculpability: only a group of issuing managers larger than then the threshold
can frame a user.

Yet we can also produce full strong exculpability (where even the entire set
of issuing managers cannot frame a user) by considering the strong exculpable
variation of the BBS scheme described in [10]. This requires a variation of the

issuing protocol where A – the secret key of user U – is computed as g
1

x+γ

U rather
than for a fixed g1. Then the ZK proof is modified to take into account that the
user must prove that he knows a secret associated with gU (namely U proves
that he knows yU such that g1 = gUh

yU for another fixed parameter h). It is not
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hard to see that the distributed portion of the protocol does not change except
for running it with basis gU instead of g1.

4.9 Alternative share conversion protocols

We can use an alternative protocol to convert the shares from multiplicative to
additive, which is based on oblivious transfer (as initially proposed by Gilboa
[35]). The main disadvantage of that scheme is the increase in communication
complexity.

5 Distributed Camenisch-Lysyanskaya Signature Scheme
from Bilinear Maps

We now present our protocol for a distributed version of Camenisch and Lysyan-
skaya’s (DCL) group signature scheme from bilinear maps [16]. First, we recall
the details of the CL scheme (Section 5.1). Next, we show how to distribute the
issuing manager via a (t, n) threshold protocol (Section 5.2. We then prove secu-
rity of this protocol by reducing it to the security of the centralized CL scheme
(Section 5.3). Finally, we show how the tracing manager can be distributed using
known techniques (Section 5.4).

5.1 Camenisch and Lysyanskaya Anonymous Credentialing Scheme

Camenisch and Lysyanskaya (CL) proposed an efficient signature scheme based
on a discrete-logarithm assumption from earlier work by Lysyanskaya, Rivest,
Sahai, and Wolf (LRSW) [16, 42]. The scheme employs bilinear maps to allow
a party to obtain a credential and prove in zero-knowledge the knowledge of a
credential.

Before presenting the LRSW assumption, we first describe a setup algorithm
(q,G,G, g, g, e) ← Setup used in the assumptions description. G =< g > and
G =< g > describe two different groups of the same prime order q such that
g = e(g, g). e is a bilinear map.

The LRSW assumption follows. Suppose that G =< g > denotes a group
chosen by a setup algorithm Setup. Let X,Y ∈ G such that X = gx, Y = gy.
Also, let OX,Y (·) be an oracle that, on input m ∈ Z, outputs a triple A =
(a, ay, ax+mxy) for a random a. Then, for all probabilistic poly-time adversaries
A, the function ν(k), defined as follows, is negligible:

Pr[(q,G,G, g, g, e)← Setup(1k);x ∈ Zq; y ∈ Zq;X = gx;Y = gy;

(m, a, b, c)← AOX,Y (q,G,G, g, g, e,X, Y ) : m 6∈ Q ∧m ∈ Zq∧
m 6= 0 ∧ a ∈ G ∧ b = ay ∧ c = am+mxy] = ν(k),

where Q denotes a set of queries that A made to OX,Y (·).
The CL signature scheme follows. Note that for the purposes of this paper,

the signature is equivalent to a credential:
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– Key-Gen:

• run (q,G,G, g, g, e)← Setup(1k)

• choose x ∈R Zq and Y ∈R Zq
• set sk = (x, y) and pk = (q,G,G, g, g, e,X, Y ) where X = gx and Y = gy

• output sk and pk

– Sign On input message m, secret key sk = (x, y), and public key pk =
(q,G,G, g, g, e,X, Y ):

• choose a ∈R G
• output the signature σ = (a, ay, ax+mxy)

– Verfiy On input pk = (q,G,G, g, g, e,X, Y ), message m, and purported sig-
nature σ = (a, b, c):

• accept if the following equations hold: e(a, Y ) = e(g, b) and e(X, a) ·
e(X, b)m = e(g, c)

CL also has a protocol for proving knowledge of a signature (credential).
The prover and verifier in this protocol both take as input the public key
pk = (q,G,G, g, g, e,X, Y ). The prover also takes as input message m ∈ Zq
and signature σ = (a, b, c). The protocol follows:

– Phase 1. The prover does the following

• choose r, r′ ∈R Zq
• compute a blinded version of the signaturee σ̃ = (ar

′
, br
′
, cr
′r) = (ã, b̃, c̃r) =

(ã, b̃, ĉ)

• send σ̃ to the verifier

– Phase 2. Let vx = e(X, ã), vxy = e(X, b̃), and vs = e(g, ĉ).

• the prover and verifier compute these values locally

• the prover and verifier carry out a zero-knowledge proof protocol of (µ, ρ)
such that vρs = vxv

µ
xy

• the verifier accepts if the above proof holds and e(ã, Y ) = e(g, b̃)

5.2 Distributing the CL issuing manager

We now present a (t, n) threshold protocol for distributing the issuing manger
in the CL group signature scheme. This protocol has two subprotocols: one for
key generation, and one for issuing credentials.

The players run on input q,G,G, g, g, e. q denotes the prime order of groups
G = 〈g〉 and G = 〈g〉. e denotes a bilinear, non-degenerate, and efficient mapping
e : G×G→ G. The public key is pk = (q,G,G, g, g, e,X, Y ), whereX and Y come
from running a distributed key generation (DKG) protocol among the players.
The secret key sk = (x, y) also comes from the DKG protocol such that X = gx

and Y = gy.

In section 5.2.1, we describe the key generation protocol. In section 5.2.2, we
describe the protocol for issuing credentials.
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5.2.1 Key generation protocol

This protocol uses a DKG subprotocol to create shared secrets and the MtA
protocol to keep the combined shares additive.

– Phase 1. All players run two DKG protocols to generate the secret values x
and y such that each Pi has share xi of x and yi of y where

∑
i xi = x and∑

i yi = y for 1 ≤ i ≤ n. The values X = gx and Y = gy are public.
– Phase 2. Each Pi, Pj runs the MtAwc protocol to get additive shares such

that xiyj = γij + δij .
– Phase 3. Pi sets ti = xiyi +

∑
i 6=j γij +

∑
i 6=j δij . It follows that xy =

∑
i ti.

Let pk = (q,G,G, g, g, e,X, Y ) where X,Y ∈ G, and G = 〈g〉 is the target
group of e. Let sk = (x, y).

5.2.2 Credential issuing protocol

The credentialing algorithm runs on input U = gu, sk, and pk. U refers to
the user’s identity. The value u is secret to the user. σ = (a, b, c) denotes the
credential the user receives at the end of the issuing protocol. Note that a =
gα, b = ay, c = axUαxy. We point out that a credential can be verified by the
user by checking that

e(a, y) = e(b, g) and e(a,X) · e(b,X) = e(c, g) (1)

We point out that the value α has to be kept secret (it is not hard to see that
if the adversary knew α he could forge new credentials). Therefore the value α
has to be generated in a shared form by the players. In turn this implies that
we need to run another MtA protocol to compute additive shares of the value
αxy where each player uses the shares αi, ti. However in this case we cannot
immediately run the MtAwc protocol because we do not have the values gti

public that allow the ZK proof of correctness to be run (and again it’s not hard
to see that if the values gti were made public at the end of the Key Generation
phase, then the scheme would become insecure because the value gxy =

∏
i g
ti

would also be public).
So in this case we run the basic MtA protocol to compute shares of αxy. Note

that this means that we can’t check if the adversary is inputting the correct
values into the computation and this makes simulating the protocol difficult
(intuitively we can’t rule out an adversarial strategy where, by “messing up” in
the MtA protocol, secret information held by the honest players is leaked)5.

To deal with this issue we have the players distributively check if the resulting
credential is valid or not, i.e. if Eq. 1 is satisfied or not. If the credential is not
valid, then the check results in the honest players revealing pseudorandom values
and therefore leaking no private information. Details appear in the security proof.

– Phase 1. The players select a = gα via a DKG protocol. Each player Pi holds
share ai such that

∑
i ai = α.

5 Compare this to the threshold version of the BBS group signature in the previous
Section, where we forced the adversary to behave honestly at each step.
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– Phase 2. Each Pi, Pj runs the MtA protocol to get additive shares γ̃ij , δ̃ij
such that aitj = γ̃ij + δ̃ij .

Pi sets zi = aiti +
∑
i 6=j γ̃ij +

∑
i 6=j δ̃ij . It follows that αxy =

∑
i zi.

– Phase 3. Each player Pi calculates bi = ayi and ci = axiUzi . Player Pi
broadcasts bi.
Let b =

∏
i bi, c =

∏
i ci, ci = e(ci, g), c = e(c, g) =

∏
i ci, a = e(a,X),

b = e(b,X) and U = e(U, g)
– Phase 4. Player Pi chooses `i, ρi ∈R Zq computes Vi = cig

`i , Ai = gρi , and

[Ĉi, D̂i] = Com(Vi,Ai) and broadcasts Ĉi.
Let ` =

∑
i `i and ρ =

∑
i ρi.

– Phase 5. Player Pi broadcasts D̂i and proves in ZK that he knows xi, zi, `i, ρi
such that Vi = axiUzig`i and Ai = gρi . Let V = a−1b−1

∏
i Vi (this should

be V = g`) and A =
∏
i Ai.

– Phase 6. Player Pi computes Wi = Vρi and Ti = A`i . It commits [C̃i, D̃i] =
Com(Wi,Ti) and broadcasts C̃i.

– Phase 7. Player Pi broadcasts D̃i to decommit to Wi,Ti.
If
∏
i Ti 6=

∏
i Wi the protocol aborts.

– Phase 8. Otherwise player Pi broadcasts ci. The user computes the credential
(a, b, c) where c =

∏
i ci. If Equation 1 is satisfied the user accepts, otherwise

the protocol aborts.

5.3 Sketch of security proof

In this section we prove that our credential issuing protocol is unforgeable. In
other words we prove that the adversary cannot create a new credential even
after requesting many credential for users U of its choice (i.e. we prove that if the
original Camenisch-Lysyanskaya credentail is a signature which is existentially
unforgeable under adaptively chosen message attack, then so it is our distributed
version).

The proof of our protocol proceeds by simulation. First we simulate the
key generation protocol: on input a public key pk = (q,G,G, g, g, e,X, Y ) the
simulator runs the adversary to generate a transcript that outputs the same
public key. This is done by simply simulating the two DKG protocols to output
X and Y , and then simulate the MtAwc protocol (which however has no bearing
on the output public key). We note that at the end of this simulation, the
simulator knows all the inputs held by the adversary but does not know x1, y1,
or t1 for the honest player P1.

The next step is to simulate the credential issuing protocol every time the
adversary requests a credential for a user U . Here the simulator is allowed to
receive a valid credential (a, b, c) for U , and will simulate the protocol to output
this credential if the protocol is successful. One problem is that the adversary
may cause the protocol to fail and the simulator may not be aware if this is a
“correct” execution resulting in a correct credential or a “messed up” execution
resulting in an abort. However we note that there can be only one aborting
simulation (since if that happens the system is reset), so the simulator can guess
which execution it is and be correct with non-negligible probability.
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More specifically, let Q be the number of “credential queries” made by the
adversary. The simulator chooses an index i ∈ [1 . . . Q+ 1] and executes a good
simulation on queries 1, . . . , i− 1 and an aborting one for the ith query (setting
i = Q+ 1 means all executions are correct). The simulator guess will be correct
with probability 1/(Q+ 1) which is non-negligible.

More details on the simulation follow. The simulator runs for player P1 on
input the public key pk and the credential a, b, c.

Simulation of executions 1, . . . , i− 1.

– Phase 1. The simulator runs a simulation of the DKG that results in a. Note
that the simulator does not know a1.

– Phase 2. The simulator simulates P1 in its executions of the MtA protocols.
Pi sets zi = aiti +

∑
i 6=j γ̃ij +

∑
i 6=j δ̃ij . It follows that αxy =

∑
i zi.

– Phase 3. The simulator broadcasts b1 = b ·
∏
i 6=1 a

−yi (which he can do since
he knows the yi held by the adversary) for player P1. Note that at this point
the simulator does not know the correct c1.

– Phase 4. Let R1 be a random element in G. Player P1 chooses `1, ρ1 ∈R Zq
computes V1 = R1g`1 , Ai = gρ1 , and [Ĉ1, D̂1] = Com(V1,A1) and broadcasts
Ĉ1.

– Phase 5. All the players Pi broadcast D̂i and prove in ZK that they know
xi, zi, `i, ρi such that Vi = axiUzig`i and Ai = gρi . The simulator simulates
the ZK proof for P1 and extracts the values xi, zi for the adversary.
The simulator computes c1 = c ·

∏
i6=1 a

−xiU−zi . Let c1 = e(c1, g)
It rewinds the simulation and it now opens the commitment for P1 as V1 =
c1g`1

– Phase 6. Player P1 computes W1 = Vρ1 and Ti = A`1 . It commits [C̃1, D̃1] =
Com(W1,T1) and broadcasts C̃1.

– Phase 7. Player P1 broadcasts D̃i to decommit to W1,T1.
If
∏
i Ti 6=

∏
i Wi the protocol aborts.

– Phase 8. Otherwise player Pi broadcasts c1. The user computes the credential
(a, b, c) where c =

∏
i ci. If Equation 1 is satisfied the user accepts, otherwise

the protocol aborts.

It is not hard to see that this simulation is identically distributed to a real
protocol in which the correct signature is computed (unless “noticeable” aborts
happen)

Simulation of the last execution.

– Phase 1. The simulator runs a simulation of the DKG that results in a. Note
that the simulator does not know a1.

– Phase 2. The simulator simulates P1 in its executions of the MtA protocols.
Pi sets zi = aiti +

∑
i 6=j γ̃ij +

∑
i 6=j δ̃ij . It follows that αxy =

∑
i zi.

– Phase 3. The simulator broadcasts b1 = b ·
∏
i 6=1 a

−yi (which he can do since
he knows the yi held by the adversary) for player P1. Note that at this point
the simulator does not know the correct c1.
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– Phase 4. Let R1 be a random element in G. Player P1 chooses `1, ρ1 ∈R Zq
computes V1 = R1g`1 , Ai = gρ1 , and [Ĉ1, D̂1] = Com(V1,A1) and broadcasts
Ĉ1.

– Phase 5. All the players Pi broadcast D̂i and prove in ZK that they know
xi, zi, `i, ρi such that Vi = axiUzig`i and Ai = gρi . The simulator simulates
the ZK proof for P1.

– Phase 6. Player P1 computes W1 = Vρ1 and Ti = A`1 . It commits [C̃1, D̃1] =
Com(W1,T1) and broadcasts C̃1.

– Phase 7. Player P1 broadcasts D̃i to decommit to W1,T1.
Since

∏
i Ti 6=

∏
i Wi the protocol aborts.

In this case the simulation in indistinguishable from the real one under the
DDH assumption on the group G. Indeed the distributed check on Phases 4-7
only reveals if the shares ci held by the players reconstruct a correct credential
or not, but reveal no additional information about each individual share. Indeed
each share ci is “masked” by the value g`i which is pseudorandom under the
DDH (since all we see is gρi and g`iρi .

Completing the proof The simulation above guarantees that if an adversary
can forge a credential in the distributed protocol then he can forge credentials
directly in the Camenisch-Lysyanskaya centralized scheme (since the adversary
could simulate the entire distributed protocol itself). Note that the success prob-
ability of the adversary degrades by at least a factor of 1/(Q+ 1) which however
is non-negligible.

5.4 Distributing the CL tracing manager

As with the previous scheme, we show how to achieve distributed traceability,
thus resulting in a fully distributed group signatrue scheme. As before, distribut-
ing the tracing manager is straightforward and the main technical contribution
is the protocol for distributing the issuing manager.

The CL scheme achieves privacy by encrypting the identity of the user the
Cramer-Shoup cryptosystem [21]. The tracing manager has the Cramer-Shoup
decryption key and thus can trace the signer by decrypting their identity.

Canetti and Goldwasser show how to build a threshold variant of Cramer-
Shoup encryption [17]. Using the techniques of Canetti and Goldwasser directly,
the tracing manager can be replaced by a threshold protocol. Combined with
the distributed issuing manager, this yields a fully distributed variant of the CL
group signature scheme.
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A The ZK Proofs for the MtAwc protocol

In this section we describe the ZK proofs that are needed in the MtAwc protocol
(see Section 3). The proofs are based on similar ones from [43]: specifically we
prove statements that are simpler than the ones needed in [43].

In these proofs the Verifier uses an auxiliary RSA modulus Ñ which is the
product of two safe primes P̃ = 2p̃ + 1 and Q̃ = 2q̃ + 1 with p̃, q̃ primes. The
Verifier also uses two values h1, h2 ∈ Z∗Ñ according to the commitment scheme
in [28]. Security is based on the assumption that the Prover cannot solve the
Strong RSA problem over Ñ .

Therefore our initialization protocol must be augmented with each player Pi
generating an additional RSA modulus Ñi, and values h1i, h2i, together with a
proof that they are of the correct form (see [28]).

A.1 Range Proof

This proof is run by Alice (the initiator) in the MtAwc protocol.
The input for this proof is a Paillier public key N,Γ , a value c ∈ ZN2 , and a

value M ∈ G a cyclic group of order q generated by g. The Prover knows m ∈ Zq
and r ∈ Z∗N such that c = ΓmrN mod N2, and M = gm ∈ G.

At the end of the protocol the Verifier is convinced that the Prover knows
such an m and that m ∈ [−q3, q3].

– The Prover selects α ∈R Zq3 , β ∈R Z∗N , γ ∈R Zq3Ñ and ρ ∈R ZqÑ .

The Prover computes A = gα, z = hm1 h
ρ
2 mod Ñ , u = ΓαβN mod N2, w =

hα1h
γ
2 mod Ñ .

The Prover sends z, u, w to the Verifier.
– The Verifier selects a challenge e ∈R Zq and sends it to the Prover.
– The Prover computes s = reβ mod N , s1 = em + α and s2 = eρ + γ and

sends s, s1, s2 to the Verifier.
– The Verifier checks that s1 ≤ q3, gs1 = AMe, u = Γ s1sNc−e mod N2 and
hs11 h

s2
2 z
−e = w mod Ñ .

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how to solve it
using a Prover who succeeds on incorrect instances (i.e. where |m| > q3).

Let h2 = s̃ and h1 = hχ2 for a random χ ∈ ZqÑ . It is not hard to see that the
distribution of these values is indistinguishable from the real one with sufficiently
high probability.

Run the Prover on a successful execution over a challenge e and then rewind
him and find a successful execution with challenge ê. Therefore we have the
same first message z, u, w and two set of answers s, s1, s2 for challenge e, and
ŝ, ŝ1, ŝ2 for challenge ê both satisfying the verification equations. Let ∆E = e− ê,
∆s1 = s1 − ŝ1 and ∆s2 = s2 − ŝ2.

Let λ = GCD(∆s2 + χ∆s1, ∆E). Assume λ 6= ∆E : denote with λs = (∆s2 +
χ∆s1)/λ and λE = ∆E/λ > 1. Then we find µ, ν such that µλs + νλE = 1.
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Then the solution to the Strong RSA challenge is x̃ = zµs̃ν mod Ñ , λE .
Indeed note that

w = hs11 h
s2
2 z
−e = hŝ11 h

ŝ2
2 z
−ê mod Ñ

therefore
z∆E = h∆s11 h∆s22 = s̃∆s2+χ∆s1 mod Ñ

which implies
zλE = s̃λS mod Ñ

Concluding
s̃ = s̃µλs+νλE = [zµs̃ν ]λE mod Ñ

We now need to prove that the case λ = ∆E cannot happen with high
probability.

Consider first the case λ = ∆E but ∆E does not divide ∆s1. Write χ =
χ0 +χ1p̃q̃ with χ1 chosen uniformly at random from a set of size > q. Note that
the value χ1 is information theoretically secret from the adversary (who only
has h1, h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

Then there is a prime power ab (with a ≥ 2) such that ab|∆E , ab−1|∆s1 but
ab does not divide ∆s1. Note that this implies that ab−1|∆s2. Set c0 = (∆s2 +
χ0∆s1)/ab−1 and c1 = ∆s1p̃q̃/a

b−1. We have that c0 + χ1c1 = 0 mod a and
c1 6= 0 mod a. The number of elements χ1 for which this equivalence holds is at
most q/a+ 1 and thus the probability of this holding for a random choice of χ1

is at most 1
a + 1

q which is at most 1
2 + 1

q . Otherwise we are in the case above
with λ 6= ∆E .

Now consider the case λ = ∆E and ∆E |∆s1. Note that this implies that
∆E |∆s2 as well. Define m1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 = (eŝ1 − ês1)/∆E ,
γ1 = (eŝ2 − ês2)/∆E .

These ensure that z = hm1
1 hρ12 mod Ñ , w = hα1

1 hγ12 mod Ñ , s1 = em1 + α1

and ŝ1 = êm1 + α1.
Finally denote with m′1 = ∆s1∆

−1
E mod N and α′1 = (eŝ1− ês1)∆−1E mod N .

Note that since m′1 = m1 mod N and α′1 = α1 mod N , there must be r1, β
′ ∈ Z∗N

such that
c = Γm

′
1rN1 and u = Γα

′
1(β′)N mod N2

At this point we know the following facts

s1 < q3 s1 = em1 + α1 s1 = em′1 + α1 mod N

ŝ1 < q3 ŝ1 = êm1 + α1 ŝ1 = êm′1 + α1 mod N

Therefore we can prove that m1 ∈ [−q3, q3] since |m1| ≤ |∆s1| ≤ q3. But this
implies that m′1 ∈ [−q3, q3] since m′1 = m1 mod N and N > q7.

Note also that gm1 = M via a standard Schnorr-like extraction argument.

Honest-Verifier Zero-Knowledge. The simulator proceeds as in [43]. Choose
z, s, s1, s2, e according to the appropriate distribution and set u = Γ s1sNc−e mod
N and w = hs11 h

s2
2 z
−e mod Ñ .
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A.2 Respondent ZK Proof for MtAwc

This proof is run by Bob (the responder) in the MtAwc protocol.
The input for this proof is a Paillier public key N,Γ and two values c1, c2 ∈

ZN2 , together with a value X in G the DSA group.
The Prover knows x ∈ Zq, y ∈ ZN and r ∈ Z∗N such that c2 = cx1Γ

yrN mod
N2, and X = gx ∈ G, where q is the order of the DSA group.

At the end of the protocol the Verifier is convinced of the above and that
x ∈ [−q3, q3].

– The Prover selects α ∈R Zq3 , ρ ∈R ZqÑ , ρ′ ∈R Zq3Ñ , σ ∈ ZqÑ , β ∈R Z∗N ,
γ ∈R Z∗N and τ ∈R ZqÑ .

The Prover computes u = gα, z = hx1h
ρ
2 mod Ñ , z′ = hα1h

ρ′

2 mod Ñ , t =
hy1h

σ
2 mod Ñ , v = cα1Γ

γβN mod N2, and w = hγ1h
τ
2 mod Ñ .

The Prover sends u, z.z′, t, v, w to the Verifier.
– The Verifier selects a challenge e ∈R Zq and sends it to the Prover.
– The Prover computes s = reβ mod N , s1 = ex+α, s2 = eρ+ ρ′, t1 = ey+ γ

and t2 = eσ + τ .
The Prover sends s, s1, s2, t1, t2 to the Verifier.

– The Verifier checks that s1 ≤ q3, gs1 = Xeu ∈ G, hs11 h
s2
2 = zez′ mod Ñ ,

ht11 h
t2
2 = tew mod Ñ , and cs11 s

NΓ t1 = ce2v mod N2.

Completeness. By inspection.

Soundness. Let Ñ , s̃ be our Strong RSA challenge. We show how to solve it
using a Prover who succeeds on incorrect instances (i.e. where |x| > q3).

Let h2 = s̃ and h1 = hχ2 for a random χ ∈ ZqÑ . It is not hard to see that the
distribution of these values is indistinguishable from the real one with sufficiently
high probability.

Run the Prover on a successful execution over a challenge e and then rewind
him and find a successful execution with challenge ê. Therefore we have the same
first message u, z, z′, t, v, w and two set of answers s, s1, s2, t1, t2 for challenge e,
and ŝ, ŝ1, ŝ2, t̂1, t̂2 for challenge ê both satisfying the verification equations. Let
∆E = e− ê, ∆s1 = s1 − ŝ1, ∆s2 = s2 − ŝ2, ∆t1 = t1 − t̂1 and ∆t2 = t2 − t̂2.

Let λ = GCD(∆s2 + χ∆s1, ∆E). Assume λ 6= ∆E : denote with λs = (∆s2 +
χ∆s1)/λ and λE = ∆E/λ > 1. Then we find µ, ν such that µλs + νλE = 1.

Then the solution to the Strong RSA challenge is x̃ = zµs̃ν mod Ñ , λE .
Indeed note that

z′ = hs11 h
s2
2 z
−e = hŝ11 h

ŝ2
2 z
−ê mod Ñ

therefore
z∆E = h∆s11 h∆s22 = s̃∆s2+χ∆s1 mod Ñ

which implies
zλE = s̃λS mod Ñ

Concluding
s̃ = s̃µλs+νλE = [zµs̃ν ]λE mod Ñ
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Let λ′ = GCD(∆t2 +χ∆t1, ∆E). In a similar way as above we can prove that
if λ′ 6= ∆E then we can solve our Strong RSA challenge.

Therefore we can limit ourselves to the case λ = λ′ = ∆E .
Consider first the case λ = λ′ = ∆E but ∆E does not divide ∆s1. Write

χ = χ0 +χ1p̃q̃ with χ1 chosen uniformly at random from a set of size > q. Note
that the value χ1 is information theoretically secret from the adversary (who
only has h1, h2). We have that

∆s2 + χ∆s1 = ∆s2 + χ0∆s1 + χ1∆s1p̃q̃

Then there is a prime power ab (with a ≥ 2) such that ab|∆E , ab−1|∆s1 but
ab does not divide ∆s1. Note that this implies that ab−1|∆s2. Set c0 = (∆s2 +
χ0∆s1)/ab−1 and c1 = ∆s1p̃q̃/a

b−1. We have that c0 + χ1c1 = 0 mod a and
c1 6= 0 mod a. The number of elements χ1 for which this equivalence holds is at
most q/a+ 1 and thus the probability of this holding for a random choice of χ1

is at most 1
a + 1

q which is at most 1
2 + 1

q . Otherwise we are in the case above
with λ 6= ∆E .

In a similar fashion we can remove the case in which λ = λ′ = ∆E but ∆E

does not divide ∆t1.
Now consider the case λ = λ′ = ∆E with ∆E |∆s1 and ∆E |∆t1. Note that

this implies that ∆E |∆s2 and ∆E |∆t2as well.
Define x1 = ∆s1/∆E , ρ1 = ∆s2/∆E , α1 = (eŝ1 − ês1)/∆E , ρ′1 = (eŝ2 −

ês2)/∆E , y1 = ∆t1/∆E , σ1 = ∆t2/∆E , γ1 = (et̂1 − êt1)/∆E and τ1 = (et̂2 −
êt2)/∆E .

Define x′1 = x1 mod N and y′1 = y1 mod N . Note that by definition

c
x′1
1 Γ

y′1κN = c2 mod N2

for some κ as needed. And gx1 = X ∈ G. So we have extracted the required x, y.
As in the previous proof we can establish that x1, x

′
1 ∈ [−q3, q3].

Honest-Verifier Zero-Knowledge. The simulator proceeds as in [43] and
in the previous ZK proof.

A.3 The Strong RSA Assumption

Since the ZK Proofs rely on the Strong RSA Assumption, we recall it here.
Let N be the product of two safe primes, N = pq, with p = 2p′ + 1 and

q = 2q′+ 1 with p′, q′ primes. With φ(N) we denote the Euler function of N , i.e.
φ(N) = (p− 1)(q − 1) = p′q′. With Z∗N we denote the set of integers between 0
and N − 1 and relatively prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [49] states
that it is infeasible to compute e-roots in Z∗N . That is, given a random element
s ∈R Z∗N it is hard to find x such that xe = s mod N .

The Strong RSA Assumption (introduced in [7]) states that given a random
element s in Z∗N it is hard to find x, e 6= 1 such that xe = s mod N . The
assumption differs from the traditional RSA assumption in that we allow the
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adversary to freely choose the exponent e for which she will be able to compute
e-roots.

We now give formal definitions. Let SRSA(n) be the set of integers N , such
that N is the product of two n/2-bit safe primes.

Assumption 2 We say that the Strong RSA Assumption holds, if for all prob-
abilistic polynomial time adversaries A the following probability

Prob[ N ← SRSA(n) ; s← Z∗N : A(N, s) = (x, e) s.t. xe = s mod N ]

is negligible in n.

B Group Signature formal definitions from [8]

As mentioned in Section 2.3, Bellare et al. formalize the properties and security
definitions relating to group signature schemes [8].Our security arguments in this
paper do not deal with these definitions directly. Instead we show by simulation
that our distributed protocols are secure by reducing to the security of the
centralized schemes, which are in turn have previously proven secure by these
definitions. Nevertheless, for completeness, we recall the formal definitions from
[8] here.

Group signatures have two formal security requirements, full-anonymity and
full-traceability, the imply a number of other informal requirements that to-
gether ensure security of the scheme [8]. Full-anonymity’s definition employs an
indistinguishability-based formalization in which the adversary produces a mes-
sage and a pair of identities that belong to the group in question. The adversary
then receives a signature on the message under a random one of the two iden-
tities. Finally, the adversary tries to determine which identity associates to the
signature. To achieve security, the adversary must have no more than a negligible
advantage over one-half in deciding the correct identity. Adding to the situation,
the adversary has access to the secret keys of every group member and can see
the results of the group manager attempting to open arbitrary signatures chosen
by the adversary, except for the challenge signature.

Full-traceability requires that a collusion of group members cannot create
a valid signature by pooling their secret keys without the signature being vul-
nerable to being caught by the group manager. The opening algorithm must be
able identify a member of the group as the owner of the signature in the event
of collusion. This requirement must hold even if the colluding group knows the
group manager’s secret key for opening signatures.

Before formalizing a definition for group signature schemes, we first define
negligibility. We say a function f : N → N is nice if it is polynomially bound
and computable in polynomial time. The notion of a function ν : N → N begin
negligible is standard. The negligibility definition in this paper applies a two-
argument function µ : N × N → N . µ is negligible if for every nice function
n : N → N the function µn : N → N is negligible, where µ(k) = µ(k, n(k)) for
all k ∈ N .
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We now formulate a definition of group signatures. Let GS = (Key − Gen,Sign,Verify,Open)
denote a group signature scheme:

– Key-Gen denotes a key generation algorithm that takes as input 1k, 1n, where
k ∈ N denotes the security parameter and n ∈ N denotes the number of
members in the group. This algorithm outputs a tuple (gpk, gmsk, gsk),
where gpk is the group public key, gmsk is the group secret key, and gsk is
an n-vector of keys such that gsk[i] is a secret signing key for player i ∈ [n].

– Sign is a random algorithm that takes as input a secret signing key gsk[i]
and message m. It returns a signature of m under gsk[i].

– Verify is a deterministic algorithm that on input group public key gpk, mes-
sage m and candidate signature σ returns 1 if it σ is valid on m or 0 if
not.

– Open is a deterministic algorithm that takes as input group manager secret
key gmsk, message m, and signature σ and returns identity i or, if it fails,
⊥.

The scheme has the following corrections requirement: for all k ∈ N , all
(gpk, gmsk, gsk ∈ [Key − Gen(1k, 1n)]), all i ∈ [n], and all m ∈ {0, 1}∗:

Verify(gpk,m,Sign(gsk[i],m)) = 1

and
Open(gmsk,m,Sign(gsk[i],m)) = i

In words, the verification requirement ensures that valid signatures with the
appropriate message verify, and the open requirement ensures that the Open
algorithm finds the identity when provided with a valid signature.

We now formalize full-anonymity. Recall that the adversary has the secret
keys of every group member. Let Open(gmsk, ·) denote an opening oracle that
when queried with message m and signature σ answers with Open(gmsk,m, σ).
The adversary has access to this oracle. For any group signature scheme GS(Key − Gen,Sign,Verify,Open),
adversary A, and bit b, the following experiment applies:

– Experiment Expanon-b
GS,A (k, n)

• (gpk, gmsk, gsk)
R←− Key − Gen(1k, 1n)

• (St, i0, i1,m)
R←− AOpen(gmsk,·,·)(choose, gpk, gsk);σ

R←− Sign(gsk[ib],m)

• d R←− AOpen(gmsk,·,·)(guess, St, σ)
• If A did not query its oracle with m, σ, in the guess stage then return d

EndIf
• Return 0

To explain the experiment, we start with the adversary. A has two stages: choose
and guess:

– Phase1.(choose) On input group member secret key gpk
• A can query Open(gmsk, ·) on signatures of its choice
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• A outputs two valid identities 1 ≤ i0, i1 ≤ n, message m, and some state
information St

– Phase2.(guess) On input the state information St and a signature on m
produced using the secret key of either i0 or i1 chosen at random
• A can query the oracle, but not on the challenge signature
• A returns its guess of the identity

A’s advantage in breaking full-anonymity is:

Advanon
GS,A(k, n) = Pr[Expanon-1

GS,A (k, n) = 1]− Pr[Expanon-0
GS,A (k, n) = 1]

If the two-argument function Advanon
GS,A(·, ·) is negligible with respect to the defi-

nition of negligibility above for any polynomial time adversary, then GS is fully-
anonymous.

We now formalize full-traceability. Recall that for full-traceability, no col-
luding set S of group members can create an unopenable signature. Note that
this requirement implies than any signature generated by the colluders must
trace back to a member of the group when running the Open algorithm. Further
note that the adversary has the group manager’s secret key. Full-traceability’s
definition uses to the following experiment:

– Exptrace
GS,A(k, n)

• (gpk, gmsk, gsk)
R←− Key − Gen(1k, 1n)

• St← (gmsk, gpk); C ← ∅;K ← ε;Cont← true
• While (Cont = true) do

∗ (Cont, St, j)
R←− ASign(gsk[·],·)(choose, St,K)

∗ If Cont = true then C ← C ∪ {j};K ← gsk[j] EndIf
• EndWhile
• (m,σ)

R←− ASign(gsk[·],·)(guess, St)
• If Verify(gpk,m, σ) = 0 then return 0; If Open(gmsk,m, σ) = ⊥ return 1
• If there exists i ∈ [n] such that the following are true then return 1 else

return 0
1. Open(gmsk,m, σ) = i
2. i 6∈ C
3. i,m was not queried by A to its oracle

Once again, the adversary has a choose stage and a guess stage:

– Phase1.(choose) On input group public key gpk and group manager secret
key gmsk
• A corrupts a set C of group members
• C identity numbers of corrupted members

– Phase2.(guess)
• A outputs a forgery (m,σ)

A wins if σ is a valid group signature on m and the opening algorithm returns ⊥
or i such that i 6∈ C. Like in full-anonymity, the experiment returns 1 if A wins
and 0 if A loses. A’s advantages has the following description:

Advtrace
GS,A(k, n) = Pr[Exptrace

GS,A(k, n) = 1]

If the two-argument function Advtrace
GS,A(·, ·) is negligible, then GS is fully-traceable.


