
Accelerating Decentralized Execution of Blockchain
Transactions Towards Centralized Performance

Maya Leshkowitz, Oded Wertheim and Ori Rottenstreich
Orbs

www.orbs.com

Abstract—Blockchain mechanisms include two main tasks:
transaction ordering and transaction execution. Following a
paradigm in which execution is separated from ordering we
focus on the execution task. Typically blockchain execution is
performed sequentially due to possible dependencies between
transactions. To allow scalability, we suggest a decentralized
execution model in which network nodes interact with a stronger
accelerator. The accelerator executes a block of transactions
and provides hints that allow committees of nodes to execute
in parallel the different block segments. The committees then
verify the execution of the accelerator and the validity of the
block partition to segments. The protocol guarantees correctness
of the execution as well as liveness, even when the accelerator
or subset of the nodes are Byzantine. We expedite the execution
process towards the performance of a centralized system while
minimizing the amount of communication between the players.
We evaluate our solution and compare it to existing schemes.

I. INTRODUCTION

A. Transaction ordering and execution

Blockchain mechanisms are composed of two main tasks,
transaction ordering and transaction execution. In the ordering
process, nodes reach consensus regarding the ordering of trans-
actions. Transactions can either be simple payments between
one node to another or may encompass more general function-
ality such as of Ethereum smart contracts [17]. Transactions
are ordered within a block, and blocks are appended to the
chain, implying a full ordering on the transactions. The task of
transaction execution is essentially computing the new state of
the system which is the outcome of executing the transactions
in the block on the previous state. The state contains data such
as the balance of every user account. Transaction execution is
also responsible for outputting the outcome of execution, also
known as transaction receipts.

Classical blockchain implementations couple between these
two tasks by requiring execution of the new block to be
performed by the block proposer. For example, this is the case
in Ethereum [17] where the new state is computed by a miner
as part of the newly proposed block. Nodes that receive a
block proposal accept it only after re-executing and checking
that the state was computed correctly. The coupling between
the ordering and execution tasks may undermine efficiency, as
these two processes necessitate different resources in terms of
storage, bandwidth and computation power. As a result, they
admit to different approaches for distributing and scaling.

Parallel transactional execution is not straightforward and
can only be done to a limited extent due to dependency

between transactions. The problem is even more challenging in
execution of Turing complete code, where the state variables
accessed during the execution may depend on the current state,
thus cannot be determined prior to the execution. A common
method for parallel execution is transactional memory [12].
With transactional memory, transactions may be speculatively
executed in parallel based on the state prior to the execution.
This approach requires roll back in case of conflict, which can
be efficiently performed when run by a single party but has
high latency overhead in decentralized systems.

B. Our Contribution

Our main result is a paradigm that refers to a blockchain
protocol that achieves consensus on the ordering of trans-
actions prior to execution. Our paradigm modifies the way
transaction execution is performed, achieving accelerated
transaction execution in the presence of a strong computational
entity, which we refer to as an accelerator. The accelerator is
a high performance entity (in terms of compute, storage and
network capabilities) that is likely to operate as a distributed
system over multiple cores and servers enabling it to perform
fast execution of the entire block. The accelerator performs the
entire execution and supplies executors with hints that allows
them to execute and verify partial segments of the block in
parallel such that verification of the different segments imply
valid execution of the block.

The main advantage of the accelerated protocol is that when
the accelerator is honest and the number of executors in the
network is moderate, the total running time of the execution is
close to that of an efficient execution in a centralized system.
Moreover, when the accelerator or some of the executors
are faulty, the protocol still enjoys liveness and security in
execution like a decentralized system. Another significant
advantage is that unlike many novel sharding architectures, the
parallel execution is performed seamlessly to the application.

As illustrated in Fig. 1, the accelerated transaction execution
protocol works by breaking the transaction execution of a
block into disjoint segments of consecutive transactions. The
accelerator performs the execution of the entire block and
while doing so saves for each segment i ∈ [1, n] the write
operations that are the result of execution of the first i
segments. Other network nodes are organized in committees
and serve as executors. Committee i is in charge of verifying
the execution of segment i, using the write operations of the
first i − 1 segments as input for execution. If the transaction

http://orbs.com


Wk1

Wki

Wkn

i

1

n

accelerator

β

1 i n

Segment

Block

n committees
Φ(s,Wki−1 ,Bi)

Fig. 1. Illustration of a block transaction execution. The accelerator performs
execution β times faster than a (regular) executor. The accelerator provides
committee i ∈ [1, n] hints (like Wki−1 ) needed for executing the ith segment
Bi and for checking consistency between segments. This allows parallel
execution of the different segments by the committees and checking that the
block was executed correctly by the accelerator. Each committee is composed
of several executors, each performing this check.

execution by the accelerator was not performed correctly then
at least one segment was not executed correctly or there is a
pair of adjacent segments that are not compatible. In both cases
at least one committee would detect this and notify the other
network nodes. The protocol then falls to the base execution
protocol where execution is performed independently by the
executors until the faulty accelerator is replaced.

The protocol incorporates several techniques to overcome
inherent challenges for achieving correctness, liveness and
communication efficiency when both the accelerator and a
certain fraction of the executors may be faulty. In order to
achieve correctness we need the executors to ensure compati-
bility between the execution of different segments. We do this
by having the executor send an execution digest, which is a
succinct message containing necessary information about the
execution of all the segments. When all committees approve
the execution digest it follows that the entire execution was
performed correctly.

The executors are also required to validate the partition
of the transactions into segments, which is performed by the
accelerator. Transactions should not be edited and their order
should be maintained. This is especially crucial as well as
challenging when committees receive only the transactions
of their segment and not all transactions. We design a proof
technique that allows the accelerator to prove the partition
validity through its approval by all committees.

II. RELATED WORK

The common art in most of the blockchain decentralized
architectures is to have all the nodes validate by executing
every block of transactions. In such architectures, increasing
the network size does not increase the network capacity and
the network scale is limited.

An approach for addressing blockchain scalability and in
particular tokens or asset management applications is by L2
network architecture, such as State channels [3] or Plasma [2].

L2 networks are built on top of a main blockchain and increase
scalability by transitioning some of the state handling off-chain
while relying on the main chain for synchronization, security
and dispute mediation. Hyperledger Fabric [5] introduces an
execution-ordering-validation paradigm performing execution
based on the current state. Transactions are ordered after
execution and then validated, ensuring that the execution is
consistent with current state. Transactions executed on a stale
state are marked as invalid and their effects are disregarded.

Other architectures such as Telegram Open Network [11]
and Polkadot [1] implement a sharding scheme to address
network scalability. In these sharding schemes, the network
state, users and participating nodes are divided into shards,
allowing each shard to operate independently. Cross-shard
operations are performed by a messaging scheme, a trans-
action is first executed on the sender shard, as a result one
or more messages along with an execution proof may be
sent to other shards to continue the execution. While these
sharding schemes address the network scale, they are not
transparent to a general purpose application and in particular
require special handling of atomic cross-shards operations.
Methods for increasing the network transaction rate, using
software transactional memory methods by the leader node
and sending scheduling hints to the validation nodes have also
been examined [10].

III. PRELIMINARIES

We overview cryptographic primitives and data structures
that we make use of in our protocol.

A. Cryptographic Hash Functions

Along the paper we assume the hash functions used are
second preimage resistant. A hash function H is second
preimage resistant if it is hard to find for a given m1 a
preimage m2 ≠ m1 such that H(m1) = H(m2). We denote
by L the length in bits of the hash value.

B. Merkle Tree

A Merkle tree is a known tool in cryptography, first sug-
gested by Merkle [13] which enables proving a membership of
a data element in a set efficiently, without revealing the entire
set. In a Merkle tree, every node has a Merkle label. For the
leaves this label is the hash of a data block, and for every non
leaf node this label is the hash of the concatenation of the
labels of its children (or the label of its child in case it only
has one child). In order to verify that some data is included
in a Merkle tree T , one needs to obtain from a trusted source
the label of the Merkle root of the tree, which we denote by
M(T ). A Merkle proof for the containment of some data v,
which corresponds to a leaf in the tree, consists of the sibling
path of the leaf, which contains the labels of all the siblings of
the nodes in a path from the leaf to the root. We assume Merkle
trees are second preimage resistant, making it impossible to
reproduce a Merkle root label.

2



C. Threshold Cryptography

Threshold cryptography [7], [9], [16] refers broadly to
techniques for allowing joint groups of entities to use a cryp-
tographic system, be it to compute signatures, or to decrypt
data. In the context of this work, we make use of threshold
signatures. In particular, a (t, c)-threshold signature scheme is
executed by c entities, any t of which (for some fixed t ∈ [2, c])
are able to sign a message successfully. Threshold security
guarantees that whenever a specified hardness assumption
holds, any attempt by up to t − 1 of the entities to sign a
message is bound to fail.

IV. MODEL AND DEFINITIONS

A. Players and Byzantine model

We assume that the identities of the accelerator and all
executors are known in advance. We assume that the executors
are partitioned to n groups called committees which are static1.
For simplicity of presentation we assume all committees have
the same number of members c. Each participant is aware
of the identities of executors in its committee, and is aware
of identifiable data regarding other committees (such as the
public key associated with each committee).

We regard nodes that are either sleepy or dishonest as faulty.
We assume that there are at most α fraction of faulty executors
in each committee (where α ⋅ c is an integer), and α < 1

2
is

a known system parameter. When assembling the committees
there is need to make sure that this assumption is justified by
taking large enough committees based on α.

For simplicity, we assume that every executor that is non-
faulty (i.e., is alive and honest) has the same computational
power. It suffices to assume that each executor has at least a
certain ammount of computational power. Denote by β > 1
the acceleration parameter, which means that the accelerator
performs computations β times faster than the executors.

Messages are either destined to a committee or to all
executors and we assume nodes propagate every message
they have not received before to all other nodes the mes-
sage is destined to. Signatures are used to authenticate the
sender’s identity. Throughout our work, we assume a strong
synchronous network. This means that there is a known fixed
bound δ, such that every message delays at most δ time when
sent from one point in the network to another.

B. Ordering Service

We assume the availability of an external transaction order-
ing service. The ordering service is responsible of ordering
transactions in blocks and reaching consensus on the ordering
of these blocks. Transactions in a block are organized in a
Merkle tree such that each transaction corresponds to a leaf.
The Merkle root of the tree is contained in the block header.
We assume that every transaction block received from the
ordering service is final in the sense that once a new block of
some height is received it will never be replaced by a different
block. In our setting the ordering service is not responsible for

1Removing the assumption of static committees can be done by performing
periodic key generation for threshold signatures.

performing validations that require executing the transaction
and is not responsible for computing the final state of the
block. Examples for consensus algorithms suitable for ordering
services include [4], [6], [8], [14].

While acceleration of the execution by parallel computation
is complex due to the sequential nature of the execution
and dependency between transactions, parallel ordering is
relatively simpler and can be achieved by techniques such as
hierarchical consensus [18].

C. State transition
We refer to the state as a map data structure containing

memory addresses and the values stored in these addresses
which enables read and write operations. Transactions are
commands that include computations and changes to be
performed to the state (this can include both simple and
complex computations). State transition is a deterministic
process in which ordered transactions in a block are executed
sequentially, receipts and write operations are created and
then applied to the current state. We divide the description
of state transition to two processes, execution and applying
write operations. We provide details on each of them below.

Transaction execution: Transaction execution is a process in
which the validity of each transaction is checked, computations
are carried out, and the write operations to the state that should
be performed as a result are determined. Write operations are
maintained in the format of (memory address, value) in an
aggregated writes data structure, where we denote by Wj

the aggregated writes that contains the write operations of
transactions tx1, . . . , txj . An example for such data structure
is a Cuckoo table [15] which enables read operation within a
constant time and efficient insertion. Execution also outputs a
receipt for each transaction, which contains the outcome of the
transaction’s execution (such as outputs, failure notices, etc.).

The input to the execution function φ is a tuple
(s,Wj , txj+1) where s is the state, txj+1 is the transaction
to be executed and Wj is the aggregated writes up to the
jth transaction tx1, . . . , txj . These are transactions that have
already been executed but have not been applied to the state
yet. Executing txj+1 may include complex computations and
reading and writing multiple values from the memory. The
state s and the aggregated write operations together serve as
the input memory for execution. When the execution of txj+1
requires writing some value v to memory address m′ then a
tuple (m′, v) is inserted to the aggregated writes. The output
of transaction execution is a tuple (Wj+1, rj+1), where Wj+1
is the new aggregated writes and rj+1 is the receipt.

We denote by Φ the execution function for a transaction list
(not necessarily a block), B = (txj+1, . . . , txj+b). The input to
Φ is a tuple (s,Wj ,B), where s and Wj are again the state
and aggregated writes. The output is a tuple (Wj+b,RB) which
contains the aggregated writes and the receipts of all transac-
tions in B. The execution function Φ executes each transac-
tion sequentially using as input the aggregated writes of all
previous transactions in B. That is, the function Φ(s,Wj ,B)
performs for i = 1, . . . , b: (Wj+i, rj+i) = φ(s,Wj+i−1, txj+i).
The function outputs the aggregated writes WB ∶= Wj+b and
receipts RB ∶= (r1, . . . , rb).

3



Bound on execution time: We bound the compute resources
for executing a transaction (such as done in [17]) and if
execution exceeds these resources then no write operations
are created for it. Using the bound on the compute resources
we bound the time complexity of executing a transaction by
an executor by a fixed bound TEφ .

Applying write operations: After executing a block of
transactions, the apply write function updates the current state.
The apply write function Ψ receives an initial state s and
aggregated writes W and updates the state s ← Ψ(s,W ) by
adding all the (memory address, value) pairs in W to the state.

D. Execution Service

The execution service is responsible for performing state
transition for a transaction block B = (tx1, . . . , txb) received
from the ordering service, and for reaching an agreement
on the state transition outputs. The output of state transition
of a block is an updated state s, block receipts RB and
aggregated block writes WB. The state is stored in a Merkle
tree, indexed by memory addresses, and updated with every
block executed2. The receipts are stored in a Merkle tree,
created for each block of transactions, indexed according to the
transaction’s number in the block. The block receipts tree RB

is never updated after its creation. The aggregated writes data
structure keeps tuples of memory addresses and their value
allowing efficient read and write operations.

For every block B received from the ordering service an
execution digest is created by the execution service which
includes:

● The block height number `.
● A hash pointer of the `th ordering block B header.
● The Merkle root of the state tree after the execution of

block ` − 1.
● The Merkle root of the block receipts tree RB.
● The hash of the aggregated block writes, WB.
For each executed block B, the execution service reaches

agreement on the outputs s, WB and RB, and a certificate
for the execution digest is created in the process. Reaching
agreement on transaction execution is important for maintain-
ing a reliable record which enables updating other network
participants (such as other executors, the ordering service and
the users) on the outcome of the execution process.

V. THE PARTITION PROOF

In the protocol the accelerator partitions an (ordered) block
B into n disjoint block segments B1, . . . ,Bn and sends segment
Bi to the ith committee. We would like to make sure that the
partition is valid such that the transactions in B1, . . . ,Bn are
identical to those of B = (tx1, . . . , txb) and they appear in the
same order. Existing transactions should not be modified or
omitted and new transactions should not be added.

2Storing the state in a Merkle tree enables maintaining a hash fingerprint
(the value of the Merkle root of the state tree) for the entire state which can
be efficiently updated when applying write operations for the block. Using
a Merkle tree for the state also enables supplying efficient proofs of values
stored in the state to network participants that are not executors.

The accelerator demonstrates this through a partition proof
µ that it sends to all n committees. Each committee i ∈ [1, n]
verifies µ with the help of information taken from its segment
Bi and signs the proof µ if the test passes. The design of
µ has the guarantee that µ is approved by all non-faulty
executors if and only if the partition is valid. Furthermore,
for communication efficiency the proof should be short. An
inherent challenge for such verification process is the partial
view each committee has based on the transactions it receives,
while the correctness of the partition is affected from the
relation between block segments (such as disjointness and full
coverage of the block).

Construction of a partition proof. We refer to the Merkle
tree of the block of transactions B as T . In the Merkle tree,
transactions appear as leaves and an internal node’s hash value
is computed based on the hash values of its direct descendants.
Executors receive the Merkle root for T from the ordering
service in a secure way, as part of the block header. Consider
the set of allocated transactions Bi for a committee i ∈ [1, n]
and the corresponding set of leaves. The block segment Bi
contains the transactions’ indices in the block. Segment Bi is
described as a disjoint union of transaction sets, such that each
set corresponds to a subtree of the Merkle tree. (By subtree
we refer to a node and all of its descendants in the tree.) We
consider such a union where each subtree is of a maximal
size, namely no two subtrees for Bi can be merged to a larger
subtree. Let Ti = {Ti,1, Ti,2, . . .} be the subtrees for segment
Bi assigned to committee i. Likewise, let Pi = {pi,1, pi,2, . . .}
be the corresponding Merkle roots for these subtrees. Each
root for a subtree is associated with the location of the subtree
in the Merkle tree. Denote by `i the number of transactions in
segment Bi. Let µ = {(P1, `i), . . . , (Pn, `i)} be the partition
proof, which includes list of subtree roots for each segment.

Verifying a partition proof. The executor first computes
the location of the subtrees in the Merkle tree for every
segment using the number of transactions `1, . . . , `n. To verify
a partition based on its proof and a block segment Bi, an
executor in the ith committee performs the following checks:

(C1) Validity of Merkle roots for segment Bi. The executor
partitions the transactions of segment Bi into subtrees using
their indices in the block which determine their location in T .
It computes the Merkle roots for each subtree and compares
them to those in Pi.

(C2) Validity of the Merkle root for the block B. An executor
makes use of the Merkle root sets P1, . . . , Pn along with their
locations to compute hash values for larger subtrees composed
of transactions from multiple segments. This process is per-
formed bottom-up, starting from the lowest level roots in µ
until computing the root of the complete Merkle tree, and
comparing it to the value received in the header of block B.

Correctness of proof verification. We show the following
property of the proof verification.

Theorem 1: The proof verification correctly determines the
validity of a partition in the sense that: (i) a valid partition
is approved by all non-faulty executors; (ii) approval by non-
faulty executors from all committees implies validity.

Proof outline. We first show that (i) holds. Within each seg-
ment an executor partitions a segment to subtrees, following

4



the segment’s location in the Merkle tree. It then computes the
hash values of each of the subtrees based on the transactions
in the segment Bi, as done in µ, and hence check (C1) passes.
Likewise, computing the Merkle root for the complete block
B can be done by the executor based on the hash values of
P1, . . . , Pn. Since the partition is valid, the root computed by
the executor matches that in the block header and (C2) passes.

We turn to show (ii), explaining that when the set of
transactions is modified by the accelerator the partition is
not approved by all non-faulty executors of some committee.
Executors in each committee compute the Merkle root for the
block based on P1, . . . , Pn. In case of an illegal partition, the
sequence of transactions (B1,B2, . . . ,Bn) differs from that of
the block B. Let i be the first committee for which its assigned
segment Bi implies a change in the sequence. We derive that
at least one of the checks (C1), (C2) fails for executors in the
ith committee and the partition is not verified.

Length of a partition proof. By deriving an upper bound
on the number of subtrees that appears in µ, we can deduce
the length of the partition proof is at most (2n⋅log2(bmax))⋅L.
The calculation is omitted due to space constraints.

VI. ACCELERATED EXECUTION PROTOCOL

The Accelerated transaction execution protocol is an in-
teractive protocol between an accelerator3and n committees
of executors each in charge of executing a segment and
verifying that the execution process was performed correctly
by the accelerator. In the absence of faulty nodes a single
executor would be enough for performing the role of the
entire committee. However, since some of the executors may
be faulty there is need for multiple executors in a committee
in order to ensure that at most an α fraction of the executors
in each committee are faulty. The protocol initializes its setup
once and then operates in terms such that in each term state
transition of a single block is performed. A term is divided to
the accelerator’s part and the executor’s part.

Initial protocol setup. For i = [1, n] the executors in
committee i run a distributed key generation protocol of a
(α ⋅c+1, c)-threshold signature scheme. The committee public
key PKi is sent to all executors in the other committees. The
accelerator generates a secret key used for signing messages.

Term description - the accelerator’s part:

Initialization of accelerator’s term. Once the previous
term has ended and a block B that succeeds the block from
the previous term is available, the accelerator initiates its term.

Partitioning and sending block segments. Given the set of
transactions in a block B = (tx1, . . . , txb) and the number of
committees n, the accelerator runs a process for partitioning
the transactions in the block into n (disjoint) consecutive block
segments B1, . . . ,Bn such that for i ∈ [1, n] the transactions
in the ith segment are Bi = (txki−1+1, . . . , txki) where k0 =

3One might also consider the presence of multiple accelerators such that at
a given time at most one of them operates. Then, upon identifying misbehavior
of the accelerator, the operating accelerator can be replaced by another. For
simplicity along the paper we refer to the existence of a single accelerator
and whenever the accelerator is faulty the base protocol is employed.

0 ≤ k1 ≤ ⋅ ⋅ ⋅ ≤ kn = b are the partition indices. Namely, the
set of transactions and their order are not modified relative to
the original block. The block is partitioned into segments such
that computing state transition of each segment takes a similar
time, up to some factor γ > 1.4

The accelerator sends executors in committee i the trans-
action segment Bi and a partition proof µ which serves as a
proof that the block was partitioned as required even though
the executor does not receive the entire block. We elaborate
more on µ and its verification in Section V.

Performing execution and sending execution outputs.
The accelerator performs transaction execution of the segments
B1, . . . ,Bn in sequential order. That is, for i ∈ [1, n] it
computes (Wki , (rki−1+1, . . . , rki)) = Φ(s,Wki−1 ,Bi). It then
sends each executor the block receipts RB = (r1, . . . , rb), the
block write operations WB =Wb and the aggregated writes at
the end of the (i − 1)th segment, Wki−1 .

Creating an execution digest DB. The accelerator sends
all committees a digest that contains the following:

● The term number.
● The partition proof µ (see Section V).
● The hash values of the aggregated writes by the end of

each segment: H(Wk1),H(Wk2), . . . ,H(Wb =WB) .
● The Merkle root M(RB) of the block receipts tree.
● The Merkle root of the state s (prior to the block

execution).
Applying write operations to state. The accelerator applies

the write operations and updates the state: s← Ψ(s,WB). This
ends the accelerator’s part and it can progress to the next term.

Term description - the executor’s part:

Initialization of executor’s term. Once the previous term
has ended and the header for the block B that succeeds the
previous block is available then the executor initiates the term
and resets the term clock.

Segment execution and validations. An executor in the
ith committee receives Bi, Wki−1 , WB, RB and DB from the
accelerator and performs the following checks:

(i) Checking the state Merkle root in the execution digest:
The Merkle root of the state in the execution digest should
equal to the Merkle root of the state that it holds.

(ii) Validating the partition proof µ: After receiving the
partition proof µ and the block segment Bi the executor checks
that Bi is indeed a valid ith block segment of B using µ and
the transaction Merkle root in the header of B (Section V).

(iii) Checking consistency between Wki−1 , WB, RB and the
execution digest: The executor computes the hashes of Wki−1 ,
WB and the value of the Merkle root of RB and checks that
they are equal to the values in the execution digest DB.

(iv) Executing the ith segment: The executor executes
the ith segment by computing: (Wki , (rki−1+1, . . . , rki)) =
Φ(s,Wki−1 ,Bi) and checks that the hash of Wki is equal
to the value in the execution digest, and that the receipts
(rki−1+1, . . . , rki) are equal to the receipts of transactions
ki−1 + 1, . . . , ki in RB.

4This can be done by relying on time observed in the accelerator execution.

5



If one of the checks fails or the executor received multiple
copies of the same message (for example, multiple versions
of the execution digest) then the executor signs a fail message
(Fail, term num) for the term and sends it to the other
executors in its committee. (See collecting failure signatures
below.) Otherwise, if all checks pass, then the executor signs
the execution digest and forwards its signature to the other
executors in its committee.

Reaching a verdict on a segment within a committee.
Within each committee i ∈ [1, n], the executors collect sig-
nature shares for the execution digest. When α ⋅ c + 1 of the
signatures are collected for an execution digest DB, then the
executor combines the shares to generate a single committee
signature Sigi(DB) (using the threshold signature scheme),
and forwards this signature to the other committees.

Constructing a certificate Cert(DB). The executor col-
lects all the committee signatures in order to create a certificate
for the execution Cert(DB) = (Sig1(DB), . . . , Sign(DB)).
Otherwise, if the executor did not receive a certificate for the
digest before time TA (defined in the running time analysis,
see ‘Term time’), and it did not do so already, the executor
signs a failure message for the term.

Collecting failure signatures. Throughout the term, the
executor collects failure messages from the executors in its
committee, and if α ⋅ c + 1 signatures are received for failing
some term ` (which might not be the term it is in right now),
the executor combines them to generate a committee failure
message and forwards this message to the other committees.
If the executor receives a committee failure message it falls to
base execution protocol, starting execution from the first block
it does not have a certificate for.

Applying block write operations. The executor updates
the state using the block write operations: s ← Ψ(s,WB),
this ends the term.

VII. BASE EXECUTION PROTOCOL

The base execution protocol is used in the absence of an
accelerator or after identifying a problem when running the
accelerated execution protocol. The protocol is run by each
executor in each committee independently and it proceeds in
terms, where in each term a single block is executed and
certificate for its execution is generated.

Initial protocol setup. In each committee, the executors run
a distributed key generation protocol of a (α⋅c+1, c)-threshold
signature scheme.

Term description:

Term initialization. Once the previous term has ended
and the header of the block B for execution is received, the
executor requests the block from the ordering service and
initiates its term.

1. Executing the block. The executor computes the Merkle
root of the transaction block B that it received and checks that
it is equal to the block header. It then executes the block by
computing (WB,RB) = Φ(s,∅,B).

2. Creating and signing the execution digest. The executor
creates an execution digest DB containing the required values

described in section IV-D. The executor then signs the digest
and sends the signed digest to its committee members.

3. Constructing a certificate Cert(DB) for the digest.
The executor collects signatures for the execution digest from
α⋅c+1 committee members and combines them to a committee
signature using the threshold signature scheme.

4. Applying write operations. The executor applies the
write operations s ← Ψ(s,WB) in order to compute the new
state s and proceeds to the next term.

VIII. RUNNING TIME ANALYSIS

We use the following upper bounds on system parameters:
● The time for processing and execution of one transaction

by the executors in the base protocol, including the
time required for computing the transaction Merkle tree,
creating write operations, a receipt and the hash of the
aggregated writes is at most TEφ .

● The number of transactions in a block is at most bmax.
● The amount of time it takes an executor to sign, send and

verify a peer signature is δsig.
● A messages sent from the accelerator reaches all relevant

non-faulty executors within δ time.
● Checking the aggregated writes for a block takes at most
δH time for each transaction in the block.

● Computing the Merkle root of the transaction block from
the block partition proof takes at most n ⋅ δpart time.

When analyzing the running time, we neglect the time of
applying write operations to the state. The rational behind it is
that the state can be partitioned to independent shards so the
executor and accelerator can parallelize the associated compu-
tations as needed such that the overall time for applying writes
is lower than the execution time. Applying write operations
can be performed in parallel to executing, because in practice
the state transition outputs are available for read operations
even before they are applied to the state.

A. Upper bounds on running time - base protocol

Following the above bounds a term of the base execution
protocol terminates in TB ∶= TEφ ⋅ bmax + c ⋅ δsig + δ time.

B. Upper bounds on running time - accelerated protocol

Accelerator’s part: We assume that the execution time of a
transaction by the executors is at most TEφ . Hence the execu-
tion time of a block by the accelerator is at most 1

β
⋅ bmax ⋅TEφ .

Transaction partitioning and creating a partition proof amounts
to computing the Merkle tree of the transaction block, which
we count as part of the time of transaction processing and
execution. The accelerator also needs to compute hashes of
the aggregated writes (of size O(bmax)) after each segment,
as apposed to once for the entire block execution. However,
in practice this does not require extra time since once the
execution of a segment is completed, the accelerator may
start computing the related hash in parallel to the execution
of the next segment. It follows that the total bound on the
accelerator’s part is TAP ∶= 1

β
⋅ bmax ⋅ TEφ .

6



Executor’s part: The time bound on the executor’s part is
TEP ∶= n ⋅ δpart + γ ⋅ bmax

n
⋅ TEφ + (c + n) ⋅ δsig + bmax ⋅ δH , where

the details are as follows:
Checking transactions partitioning. This includes two

checks. The first, validating the Merkle roots for the segment,
is counted as part of the execution time. The second, com-
puting the Merkle root of the block using the partition proof
requires at most 2n ⋅ log b hash computations (see Section V).
We denote the total time this takes by n ⋅ δpart.

Segment i transactions execution. The segments are par-
titioned so that execution of a segment by the executors takes
at most γ ⋅ bmax

n
⋅ TEφ time.

Checking consistency between the aggregated writes
and the execution digest. This requires computing hashes
of values proportional to the number of transactions in B. We
denote by bmax ⋅ δH the upper bound of this computation time.

Reaching a verdict on the block. Requires to receive and
verify signatures first within the c executors in the committee,
and then of the other n committees which in total takes at
most (c + n) ⋅ δsig time.

Term time TA: Summing the accelerator’s running time,
TAP , the time it takes for the accelerator’s message to reach
the executors, δ, the executor’s running time, TEP , and
the difference between term clocks, δ, we obtain the total
accelerated protocol term time: TA ∶= TAP + TEP + 2δ =
1
β
⋅bmax ⋅TEφ +n ⋅δpart+γ ⋅ bmax

n
⋅TEφ +(c+n) ⋅δsig+bmax ⋅δH +2δ.

C. Required committee size

Our model assumes that in each committee the ratio of
faulty executors is at most α < 0.5. We explain how this is
achieved with high probability by taking a sufficiently large
committee size. Assume the probability of an executor to
be faulty is p for some p < α, such that this happens to
two executors independently. In a committee of size c the
probability for exactly k faulty executors is (c

k
)pk(1 − p)c−k.

Their expected number is p ⋅ c. By Hoeffding’s inequality
the probability P (k ≥ α ⋅ c) = P (k ≥ (p + (α − p)) ⋅ c) is
at most e−2⋅(α−p)

2c. If the probability has to be bounded by
some small ε, a lower bound of −0.5 log ε/(α − p)2 follows
for the committee size c. The lower bound on a committee
size implies an upper bound on the number of committees
(assuming committees have disjoint sets of executors).

IX. CORRECTNESS AND LIVENESS OF THE PROTOCOL

In this section we demonstrate that the protocol satisfies the
fundamental desired properties of correctness and liveness.

Theorem 2: (Correctness) An execution digest of a term
that receives a certificate contains the hash values of the state
transition outputs (i.e., the hash of WB, the Merkle roots of
RB and the state of the previous term) which were correctly
computed using the state transition function and all non-faulty
executors hold these outputs.
Proof outline. We prove the claim by induction, assuming that
up to some term an execution digest that receives a certificate
contains the hash values of the correct state transition outputs,
and we show this also holds for the next term. Denote by
DB an execution digest that receives a certificate for the

term. In each committee α ⋅ c + 1 executors signed DB, so
at least one non-faulty executor from each committee signed
the digest. We denote these executors by e1, . . . , en. From the
induction hypothesis e1, . . . , en also hold the correct state at
the beginning of the term.

We distinguish between two cases, according to if the
certificate was obtained in the base execution protocol, or the
accelerated protocol. If the certificate was obtained using the
base protocol, then it is easy to see that it contains the hash
values of the correct state transition outputs, since e1, . . . en
are non-faulty. In the second case the certificate was obtained
using the accelerated protocol. First note that e1, . . . , en all
received the same aggregated block writes WB and block
receipts RB from the accelerator, since otherwise their hash
and Merkle root would differ from those in DB and check
(iii) fails. Since they all signed the digest checks (iv) and (iii)
passed for e1, . . . , en and hence WB and RB were computed
correctly.

Theorem 3: (Liveness) For every term, every non-faulty
executor obtains a certificate for the execution digest by time
TA+TB+3δ (where TA,TB and δ are defined in Section VIII),
regardless of whether the accelerator is faulty. Moreover, when
the accelerator is non-faulty, the outputs of state transition
and the certificate are obtained using the accelerated execution
protocol by time TA.
Proof outline. Summing the time of each process, and since
executors initiate their term at most δ time apart, for the
accelerated protocol if some non-faulty executor receives a
certificate by TA then all nodes receive it by time TA + 2δ
(according to their term clock). Otherwise all (1 −α) ⋅ c non-
faulty executors do not obtain a certificate, sign a failure
message, collect α ⋅ c+1 failure signatures (since α < 0.5) and
fall to the base protocol. For the base protocol one can readily
verify that signatures of the non-faulty executors suffice for
generating a certificate for each term within TB + δ time.

X. EVALUATION

For better understanding the accelerated execution protocol
we examine the impact of various system parameters such as
the acceleration ratio and the committees number. We also
compare the results to an existing approach.

A. Setup

We assume a general purpose application where TEφ is the
dominant factor compared to δsig, δpart and δH (defined in
Section VIII) since it requires state access and non-trivial code
execution. Hence, in our analysis we assume δH ≤ TEφ /kH ,
δpart ≤ TEφ /kpart and δsig ≤ TEφ /ksig where kH , kpart and ksig are
fixed constants. These constants may be increased by using
a hashing scheme that supports parallel computation, such as
Merkle hashing, and by parallelizing signature verification.

Using the above notation, in the base protocol, the total term
time is TB = TEφ ⋅bmax+c ⋅

TEφ
ksig

+δ = TEφ ⋅bmax ⋅ (1 + c
ksig⋅bmax

)+δ.
When the size of bmax is moderately large we can neglect δ
as it does not grow with bmax and get that the term time is
approximately TB ≈ TEφ ⋅ bmax.

7



23 24 25 26 27 28 29
22
23
24
25
26
27
28

Committees number n

T
ps

sp
ee

du
p

β = 28

β = 26

β = 24

Fig. 2. Impact of the acceleration factor β and the committees number n,
kH = 500, γ = 1.05.

23 24 25 26 27 28 29
22
23
24
25
26
27
28

Committees number n

T
ps

sp
ee

du
p

accelerated execution
execution-ordering-validation

Fig. 3. Accelerated execution vs execution-ordering-validation [5] as a
function of the committee number n and the acceleration factor β > n ⋅ γ.

We denote TpsA as the accelerated protocol throughput.
As the accelerator starts the execution of the next block
once it completes the execution of the current one, the
accelerator and executors operate in a pipeline, hence the
TpsA = bmax/max (TAP , TEP ). For large bmax we neglect
the parameters that do not scale with bmax, getting TpsA ≈
min (β, n⋅kH

γ⋅kH+n) /TEφ .

B. Throughput comparison

In Fig. 2 we compare the throughput of the accelerated
protocol, TpsA, with the throughput of a sequential execution
by a single executor bmax

TB
≈ 1
TE
φ

. We use kH = 500 based on
analysis of the transaction processing and execution time and
SHA256 hash computation time of a single state update, as
performed by a typical transaction and γ = 1.05. We note, that
increasing n beyond β ⋅γ does not provide additional speedup.

In Fig. 3 and Fig. 4 we compare the performance of our
protocol (with kH = 500, γ = 1.05) to an execution-ordering-
validation approach (such as Hyperledger Fabric [5], see Sec-
tion II) with execution performed by n committees of execu-
tors. We assume an execution of 5000 transaction per commit-
tee before a state update (corresponds to 5sec⋅1000Tps, where
5 seconds is an estimation of the time of execution, ordering
and validation). We model the state access distribution as
normal distribution N(µ,σ), namely state index i is accessed
by a transaction with probability ∫

i+1
i

1√
2πσ2

exp− (x−µ)
2

2σ2 dx.
In Fig. 3 we assume σ = 106 and examine the impact of n. As
the level of concurrency n increases, the probability of state
conflicts resulting in transaction abortion increases, limiting
the ability to scale to large n. In Fig. 4 we analyze how the two
approaches performance depends on the transaction content.

212 213 214 215 216 217 218
2

22
23
24
25
26
27
28

State access distribution σ

T
ps

[K
]

accelerated execution, n = 27

execution-ordering-validation, n = 27

execution-ordering-validation, n = 26

Fig. 4. Accelerated execution vs execution-ordering-validation [5] as a
function of the state access distribution.

We set n = 128 and evaluate the number of transactions
per second (Tps). While the transaction content does not
impact the performance of the accelerated execution approach,
with execution-ordering-validation, the effective throughput is
significantly reduced as the number of collisions increases.
We note that for σ < 215, doubling the number of parallel
committees has a little impact on the speedup.

XI. CONCLUSION

We introduced an accelerated model for transaction exe-
cution in decentralized systems. The model makes use of
an accelerator for enabling parallel execution of different
block segments by multiple nodes. The protocol relies on
proof techniques to guarantee correctness and liveness of the
execution even in case of Byzantine behavior. The evaluation
shows that the model improves the throughput of existing
schemes regardless to the existence of dependencies among
transactions. Future work will focus on deriving lower bounds
on the amount of protocol communication and allowing com-
mittees to maintain a partial state.

REFERENCES

[1] Polkadot: Vision for a heterogeneous multi-chain framework, 2016.
[2] Plasma: Scalable Autonomous Smart Contracts, 2017.
[3] Sprites and State Channels: Payment Networks that Go Faster than

Lightning, 2017.
[4] I. Abraham, G. Gueta, and D. Malkhi. Hot-stuff the linear, optimal-

resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018.
[5] E. Androulaki et al. Hyperledger fabric: A distributed operating system

for permissioned blockchains. In EuroSys, 2018.
[6] A. Asayag et al. A fair consensus protocol for transaction ordering. In

IEEE International Conference on Network Protocols (ICNP), 2018.
[7] G. Bleumer. Threshold signature. In Encyclopedia of Cryptography and

Security, 2nd Ed., pages 1294–1296. 2011.
[8] M. Castro and B. Liskov. Practical Byzantine fault tolerance and

proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.
[9] Y. Desmedt. Threshold cryptography. Encyclopedia of Cryptography

and Security, pages 1288–1293, 2011.
[10] T. D. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen. Adding

concurrency to smart contracts. Bulletin of the EATCS, 124, 2018.
[11] N. Durov. Telegram open network. 2017.
[12] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural

support for lock-free data structures. SIGARCH Comput. Archit. News,
21(2):289–300, 1993.

[13] R. C. Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, 1987.

[14] A. Miller et al. The honey badger of BFT protocols. In ACM Conference
on Computer and Communications Security (SIGSAC), 2016.

8



[15] R. Pagh and F. F. Rodler. Cuckoo hashing. In European Symposium on
Algorithms (ESA), 2001.

[16] V. Shoup. Practical threshold signatures. In EUROCRYPT, 2000.
[17] G. Wood. Ethereum: A secure decentralised generalised transaction

ledger, 2014.
[18] W. Wu, J. Cao, J. Yang, and M. Raynal. A hierarchical consensus

protocol for mobile ad hoc networks. In IEEE International Conference
on Parallel, Distributed and Network-Based Processing (PDP), 2006.

9


	Introduction
	Transaction ordering and execution
	Our Contribution

	Related work
	Preliminaries
	Cryptographic Hash Functions
	Merkle Tree
	Threshold Cryptography

	Model and Definitions
	Players and Byzantine model
	Ordering Service
	State transition
	Execution Service

	The Partition Proof
	Accelerated Execution Protocol
	Base execution protocol
	Running time analysis
	Upper bounds on running time - base protocol
	Upper bounds on running time - accelerated protocol
	Required committee size

	Correctness and Liveness of the protocol
	Evaluation
	Setup
	Throughput comparison

	Conclusion
	References

