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Abstract—In Blockchain networks involving multiple appli-
cations, the quality of service of an application is affected
by the transaction ordering. We study a setting where each
application is represented by a node, which might attempt to
prioritize its own transactions through including them early in
blocks added to the blockchain. A fair block proposal of a node
follows a random selection of the transactions among the set of
pending transactions the node is aware of. On the contrary, a
dishonest node includes more of its transactions at the expense
of transactions of other applications. In this work, we propose
a toolbox of techniques to enforce such a fair block selection.
First, we design an accurate statistical testing for the honesty
of a proposal and explain it. Next, we describe a reputation
system, documenting honesty of nodes to encourage fairness.
Our last technique enforces fair block selection through concise
commitments on the set of pending transactions known to a node.

I. INTRODUCTION

Blockchain is a growing list of records (often called trans-
actions), managed in a distributed manner among multiple
participants. Transactions can either be simple money transfers
or some more general pieces of code such as Ethereum smart
contracts [1]. The blockchain is organized in blocks, each com-
posed of multiple transactions. Typically, participants reach
an agreement on the blockchain content through an agreed-
upon addition of a new block. The new block is determined
as a selection of transactions among the pool of pending
transactions, namely transactions that have been issued by one
of the participants but do not yet appear in the blockchain. The
block selection process implies an order on the transactions.
In addition to the agreement on the block order, a consensus
is also required with regards to implied updates to the state
of the blockchain, namely either account balances or memory
values accessed by smart contracts.

While in some networks the block is jointly determined by
multiple participants (e.g., HoneyBadger [2]), typically a block
is proposed by a selected node. A node might have a complete
freedom in the selection of the transactions blocks (e.g., as in
Bitcoin [3] and Ethereum [1], where a miner can select those
of highest fees, thus maximizing its profit). A restriction on
the ability of a node to consistently manipulate the ordering
follows from the entropy in the selection of the proposing node
(either uniformly at random, based on computational power
in Proof of Work (PoW) [4] or according to one’s balance in
Proof of Stake (PoS) [5]).

Another approach restricts the freedom in block selection
by implying a review process for the block selection by other

participants [6]. These nodes, often organized as a committee,
can validate the selection according to some criteria required
from the selection, such that each node indicates whether or
not to accept the proposal. A participant not following the
required criteria from the block selection takes the risk that
its block proposal would be rejected and another participant
would be selected to propose an alternative block. Moreover,
incentives might be used to encourage nodes to avoid manipu-
lations in the block selection. When there is a particular node
allowed to present a block proposal we refer to that node as
the primary.

A recently suggested protocol, named Helix [7], suggested
a concrete method for the block selection that the primary is
expected to follow for implementing a random block selection.
The primary should simply sort its local pool of pending
transactions according to a sorting function that changes for
every round of block proposal. Then, given a maximal block
size of b transactions, the primary should simply include in
the proposed block the b transactions with the lowest ranking
based on the computed order.

An inherent challenge in validating a block proposal follows
directly from the nature of distributed blockchain networks.
While different nodes (typically) agree on the content of the
blockchain, they are not fully aware of all pending transac-
tions, such that nodes are often exposed to non-identical sets of
pending transactions. This makes it hard, or indeed impossible,
for a validator to simply reject a proposal when it does not
include a transaction that by the view of the validator was
expected to be included. The validator cannot clearly indicate
that the primary was aware of that transaction and ignored it
on purpose in order to serve other transactions it prioritizes.

Helix describes a statistical test to examine whether a
proposed block followed these instructions. It relies on a
(simplifying) model where a node has a fixed probability to be
aware of some pending transaction. For a given transaction,
this event is independent for the various nodes. In Helix a
committee member examines some level of similarity between
the proposed block and the locally computed one (while
making use of information from the actual block proposal).
This helps the committee member to make a binary decision
whether to accept the proposal or not. A minimal number of
accepting nodes among the committee members is required
for the block proposal for being approved and added to the
blockchain. Helix does not compute the probability that, based
on the validation process, a proposal was made in a honest
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Fig. 1. Illustration of the block selection scheme (as of Helix). In each Epool, etxs are sorted based on their hash values. A honest primary fairly constructs a
block from the b transactions with the minimal hash value. An unfair block selection includes skipping transactions, selecting the b block transactions among
some b′ > b transactions with minimal hash values. A committee member i examines the block proposal by computing the overlap between the proposed
block EBp and the set of etxs in a block computed locally based on EPi.

way. Indeed, such a computation seems challenging.
Our first contribution is an improvement of the specific

scheme of Helix. Specifically, we explain that, following the
statistical model for transaction dissemination, the validation
process in Helix does not fully utilize the information of the
committee members. We show that a more accurate decision
should be a joint decision of the various nodes rather than
simply being based on the number of independent approvals
among the members. We suggest how to determine the validity
of the proposal based on the aggregated information from the
members. We describe a simple formula for the probability
that a proposal is honest following the complete information
(unlike the difficulty to do so given the independent decisions
of Helix with partial information).

Our second contribution is a generic scheme that enhances
the effectiveness of committee-voting schemes at large. Specif-
ically, to provide incentives for the nodes to be honest and
behave as they are expected, we suggest a reputation system.
We describe how such a system can take into account block
proposals based on the outcome of their validation process.
The system can also take into account other factors, such as
evaluation on the accuracy of nodes’ indications while serving
as committee members.

Our third contribution takes a different approach and en-
forces honesty upfront. Specifically, we establish a technique
that effectively eliminates nodes from the option to ignore any
transactions for increasing the number of prioritized transac-
tions in a proposed blocks. We explain that a periodic concise
report of the set of known transactions to a node can be useful
towards such a goal. The technique relies on the observation
that since the transaction sorting cannot be predicted, a node
is not aware in advance of the specific transactions it would
like to ignore in a particular round. The techniques we describe
make use of various data structures such as the Bloom filter [8]

or Merkle trees [9] and their variants. Hashing is a useful
technique in such data structures, for mapping elements to
areas of the report as well as for providing a signature for a
reported element.

The rest of the paper is organized as follows. Section II
overviews the block proposal and validation procedure in
Helix. Then, Section III details the suggested alternative
validation process of a block proposal. Next, Section IV
describes the node reputation system. Then, Section V presents
the technique to enhance fairness in block proposals through
node declarations regarding their pending transactions. Finally,
concluding remarks are presented in Section VI.

II. BACKGROUND - BLOCK VALIDATION IN HELIX

In this section we provide an overview of the block selection
and its validation process in Helix. A block is selected by a
primary p from the pool of pending transactions it is aware
of EPp. In such a pool, transactions are maintained in an
encrypted form. Due to network latency, the pools EPi and
EPj of two different nodes i, j might differ. However, we may
assume a measure of similarity between two pools of pending
transactions. To model this similarity, we use a probabilistic
model satisfying the following property. For any two correct
nodes i, j each etx in EPi is in EPj with probability at least
α. We refer to α as the similarity parameter of the network.

The Helix block selection scheme uses a hash function in
order to serialize candidate etxs for the next block. The hash
function is tweaked with a random seed RS to eliminate its
predictability, yielding a common, random and unpredictable
serialization of the etxs. The random seed is a function of
the content the block from the previous round. Till a block is
selected, transactions appear in an encrypted form such that it
is difficult to predict the random seed from the transactions
following their decryption. Formally, when considering the
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block in term r, the nodes order the pending etxs according
to the values H(RSr−1, etx), and refer to these values as
the hash values of the etxs. We use the notation H(etx) for
brevity.

Let EBp be a block proposed by the primary p and
Tp be the maximal hash of an etx in EBp, i.e., Tp :=
max{H(etx)|etx ∈ EBp}. Likewise, denote by EB′i :=
{etx ∈ EPi|H(etx) ≤ Tp} the set of etxs in EPi with hash
values lower than Tp, and bi := max{|EB′i|, b}. We further
denote by b′ the size of EB′p = {etx ∈ EPp|H(etx) ≤ Tp}
and say that EBp was constructed under a b′-construction.
This illustrates the fact that EBp was selected as a subset of
size b among the b′ lowest hashed etxs in EPp such that the
b′th etx was included. The setting is illustrated in Fig. 1.

Under these notations, the validation checks (in the context
of selection fairness) performed by a committee member i
upon receiving a proposed block, EBp (from primary p), are:

1) |EBp| = b
2) |EBp ∩ EB′i| ≥ βα(bi) for βα(bi) := αbi −

√
10bi

The second condition encourages primaries to construct blocks
with low b′. The minimal value of b′ is b; in the event that the
value of b′ is in fact b, the selection scheme is perfectly fair.
Intuitively, a larger b′ allows the primary more freedom in the
selection of EBp (rather than selecting it as the b minimal
etxs). However, since we can expect |EB′p| ≈ |EB′i|, large
b′ yields large bi and accordingly large βα(bi), reducing the
chances of EBp to pass validation. βα(bi) is the maximal
value for which blocks constructed with b′ = b pass validation
w.o.p., as implied by Hoeffding’s bound.

The extra validation process dictated by the Helix block
selection scheme bears risk to the liveness of the protocol.
Blocks that would have passed validation might get rejected
once the statistical validation is enforced. It was shown that
w.o.p. a block compliant with the b-construction passes vali-
dation of a committee member that follows the protocol.

Property 1 (Liveness under b-construction.). Let EBp be a
block constructed according to the b-construction, and let i be
a committee member following the protocol. Then, EBp passes
i’s validation w.o.p. (under the assumption that α bounds from
below the similarity parameter of the network).

The property follows from the correctness of the following
lemma.

Lemma 1. For two correct nodes k, l and a general set A ⊂
EPl, |A ∩EPk| > βα(|A|) with probability greater than 1−
2 exp(−20), where βα(x) = αx−

√
10x.

III. AN ALTERNATIVE JOINT BLOCK VALIDATION

In this section we present an improvement of the Helix
scheme. As summarized in Section II, the block validation
of Helix relies on an independent evaluation of the proposed
block by each of the committee members. A committee
member votes in favor of the proposal when the conditional
probability for the block proposal to be fair is above a required
lower bound. The probability is computed based on the content

of the transaction pool of the committee member. A minimal
number of votes in favor of the proposal are required for
the block to be approved but finding the optimal number of
such required number seems difficult and is not answered
in Helix. On the positive side, this scheme does not require
communication between the committee members earlier to
their voting.

In this section, we explain that such voting criteria does not
utilize all information available by the committee members.
We follow the assumption of Helix, namely that an issued
transaction has the a fixed probability α to appear in a pool
of pending transactions by each node, such that for a given
transaction this probability is independent among the various
nodes. Accordingly, a block proposal of a honest primary
should include, with probability α, a transaction issued by
other nodes satisfying a bound on its hash value. On the other
hand, a proposal of a dishonest primary would be selective
and its number of such included transactions is expected to
be lower than that implied by such a distribution. We point
out an alternative and more accurate validation process than
that proposed for Helix. The process requires communication
among the committee members earlier to a joint indication
regarding the honesty of the block proposal.

Intuitively, the evaluation of the block proposal in Helix
decreases by each committee member for each transaction the
primary could be aware of but did not include in the proposal.
Consider for simplicity the case where a block proposal of
the primary p is evaluated by two committee members i, j.
Following the definition of the probability α and its assumed
model, we claim that the evaluation should make a distinction
between the two following cases: Case I - Node i holds a
single transaction etx1 that was not included in the block
although being expected to and another node j also holds
a transaction etx2 6= etx1 with the same property. Case II
- Both nodes i, j hold a single identical transaction etx3 not
included in the block although being expected to. The reason a
distinction should be made is the different probabilities for the
scenarios to occur with a honest primary given the existence
of the transactions by the committee members. While in Case
I, this happens w.p. of (1−α)2, in Case II the probability for
that is larger and equals 1− α.

However, the evaluation in Helix by each committee mem-
ber does not make any distinction based on the identity of
the missing transactions and accordingly cannot distinguish
between such cases since in both each committee member
observed the missing of a single transaction. We propose an
alternative approach, according to which a right evaluation
should be based on examining the ratio of included trans-
actions among those expected given the content of the local
pools among the committee members. We show that the related
probability of the primary being honest is affected by the
identity of missing transactions in the block according to each
committee member and not just by their number by each of
the members. Namely, the probability is a function of the total
number of distinct missing transactions rather than their sum
among the committee members.
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More specifically, the approval decision should determine
whether the selection is fair. Thus, each transaction that has to
be included should contribute equally to that decision, either
positively if it is indeed included, or negatively if it is not
included. This can be computed by the number of expected
to be included transactions and the number of those among
them that are indeed included. Determining these numbers
exactly, should ignore multiplicities of the same transaction
among nodes and thus requires communication among them.
Accordingly, the joint decision for the nodes is made based on
these numbers. Unlike the scheme of Helix, there is no notion
of a block approval by a single committee member and thus
computing the minimal required number of such nodes is not
necessary.

We proceed to analyze the probability for a particular
scenario based on the above mentioned transaction numbers.
Again, let EBp be a block (of size |EBp| = b) proposed by
the primary p such that Tp = max{H(etx)|etx ∈ EBp} is
the maximal hash of an etx in EBp. For a committee member
i we denote by EB′i := {etx ∈ EPi|H(etx) ≤ Tp} the set of
etxs in EPi with hash values lower than Tp and also denote
bi := max{|EB′i|, b}. Let EB′ =

⋃
iEB

′
i (where the union

is computed over the committee members) be the set of all
transactions that the the committee members are aware of and
should be included in the block as implied by Tp. Denote
b′ = |EB′|. Let EB′ ∩EBp be the set of transactions among
those expected that are indeed included in the block and let K
be the random variable for their number. For a honest primary,
K should follow a binomial distribution (α,EB′) such that
Pr(K = k) =

(
b′

k

)
αk(1 − α)b

′−k and a probability for a
honest node that an intersection of size k or less appears
is given by Φk,b

′

α =
∑k
m=0

(
b′

m

)
αm(1 − α)b

′−m. The joint
decision of the committee members should then be to accept
the block proposal whenever the computed probability satisfies
some required lower bound. The bound is selected as a tradeoff
between the liveness and the probability to reject a proposal
of a dishonest primary. A lower bound Φmin guarantees that
a proposal of a honest leader is accepted with at least such
probability.

IV. REPUTATION SYSTEM

A. Motivation
In this section we construct a generic scheme that en-

hances the effectiveness of committee-voting schemes at large.
As already noted, in typical blockchain systems, the nodes
should be assumed to be rational, self-optimizing agents (i.e.,
“players” in the game theoretic sense). It is therefore not
straightforward that they will carry their tasks, in particular
as primary nodes or as committee members, in the precise
way prescribed by the system protocol. Our goal, then, is to
provide incentives to the nodes to behave in the way they are
expected, and specifically: when acting as primary, propose
blocks according to a fair rule (e.g., according to order of
appearance) rather than prioritize some transactions (e.g., their
own) over others; and when acting as committee members,
vote honestly. Our scheme is based on a reputation system.

The idea is that, whenever a node is sensed to have performed
its task according to the protocol rules, its reputation score
would be incremented, while misbehavior should lead to a
decrease in that score. The reputation score, in turn, would
be translated into corresponding rewards and fines. The latter
would be in the form of direct monetary transactions (i.e.,
getting money as a reward or paying money as a fine), as well
is indirectly, e.g., by affecting the probability of being elected
in the future as primary or committee member (which, in turn,
would lead to a monetary reward for providing this service).

But the introduction of such a reputation system (with
the associated rewards scheme) should be done with care.
Indeed, self-optimizing agents may now focus on maximizing
their reputation, independently of what the protocol dictates.
To illustrate the potential trap here, consider a node that is
serving as a committee member and detects that the block
proposed by the primary does not pass its local test. The
protocol dictates that the node would vote against the block
acceptance. Yet the node might be concerned about finding
itself being outvoted, which would likely cause a decrease in
its reputation score. Indeed, if the node presumes that the most
probable cause for the block’s failure in passing the test is
the potential dissimilarity between the system states observed
by any two nodes, then, due to the assumed independence of
such an event among different pairs of nodes, as well as the
assumed small (a priori) probability for this event to occur,
the committee member would conclude that, most likely, the
block would be accepted by the majority of the other nodes,
hence it should better “follow the crowd”. Clearly, this would
make the whole idea of committee voting futile. One might be
tempted to overcome this problem by offering a sufficiently
large reward to nodes that (“bravely”) vote to reject a block,
whenever they reach majority; yet this may end up in another
undesirable equilibrium, where all committee members would
vote to reject, hence maximizing their reward (note that, while
this is not a dominating strategy, each committee member can
count on the other members to reach the same conclusion, i.e.,
understand that this is a pareto optimal equilibrium).

The above problem is circumvented if the committee mem-
ber would assume that the more likely cause for a block to fail
the test is dishonesty of the primary. Hence, we shall employ
the following assumption:

Assumption 1 (Dishonesty probability.). The probability that
a primary acts dishonestly is larger than the probability that
a block proposed by a honest primary does not pass the
validation check.

We note that the above assumption is quite reasonable.
For example, for Helix it has been proven that a honest
primary passes validation w.o.p. (Property 1). Moreover, for a
given probability of “dishonesty of the primary” and a given
value of the similarity probability α, one can enforce the
above assumption by appropriately tuning the “slack variable”
βα(bi). We note that, in principle, the dishonesty probability
assumption is neither necessary nor sufficient to guarantee that
a rational self-optimizing node would make a honest choice
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when casting its vote. Indeed, its decision would depend also
on the precise values of the reward and the penalty (in terms of
reputation) for making the “right” or “wrong” choice (respec-
tively). Yet, together with a well-balanced choice of rewards
and penalties, the dishonesty assumption does guarantee a
honest vote for nodes whose possible incentive for violating
the protocol is solely their reputation scores.

B. Model and Notations

We consider a blockchain system in which blocks are based
on a committee-voting principle, namely: a primary proposes
a block and committee members cast their (binary) votes, and
based on these the proposal is accepted or rejected. The vote
of a committee member i on a block proposed by a primary
p is based on a self evaluation of the validity of the proposal.

The reputation system is based on reputations scores of
nodes, as follows.

(i) Associated with each node n there is a reputation score,
RS(n), whose value can be either positive or negative.

(ii) RS(n) is initialized to some predetermined, non-negative
value ρ.

(iii) RS(n) is updated upon the following:
• Whenever n serves as primary and proposes a block (see

more details below).
• Whenever n serves as a committee member and votes on

a block (see more details below).
• Over time, the (either negative or positive) value is

aged. This can be achieved by incorporating each update
through a convex combination of the current value of
RS(n) and the new value.

• Additional events may be considered for updating the
reputation score of a node. For example: upon agreeing
to serve as primary or committee member; providing
some periodic reward for “being awake” and “not causing
problems” during some time interval (and incurring a
penalty for “causing problems” during the interval); etc.

C. Reputation Update

We recall that whenever the primary node p suggests a new
block, it is examined by committee members, each member i
performs a self evaluation, based on which it indicates on the
block acceptance or rejection. The evaluation computed by a
committee member i for a proposal of a primary p shall be
denoted by RP(p, i), i.e.: the committee member i approves
a proposed block when RP(p, i) ≥ 0. Accordingly, RP(p, i)
is taken to be the (positive or negative) “influence” of i to
the reputation score of p. For example, in the specific voting
scheme of Helix, RP(p, i) = |EBp ∩ EB′i| − (αbi −

√
10bi);

note that, here, RP(p, i) is a (decreasing) function of the
similarity probability α, namely, a committee member is more
critical for better network performance.

Updating the reputation score after proposing a block as a
primary

As mentioned above, the validation of a block by a commit-
tee member is a binary decision, according to which a block

is admitted iff RP(p, i) ≥ 0. However, for the purpose of
providing feedback for the reputation system, we suggest a
smoother function, as follows:
• If the threshold condition was met, then RP(p,i) quantifies

to what extent, and contributes a positive amount toward
the reputation of p.

• Otherwise, it contributes a negative amount, which corre-
sponds to the extent by which the threshold has not been
met.

The aggregate contribution to the reputation of the primary
p, following a block proposal submitted by it, is computed out
of the RP(p,i) of all members i of a committee C, as follows.
We first compute the mean value ERP (p), of the various
RP(p,i)’s, as well as the mean absolute deviation, MADRP(p):

ERP(p) =
1

|C|
·
∑
i∈C

RP(p, i)

MADRP(p) =
1

|C|
·
∑
i∈C
|RP(p, i)− ERP(p)|

We then define the following set:

OK(p) = {i ∈ C| |RP(p, i)− ERP(p)| ≤ γ ·MADRP(p)}

for some predetermined γ > 0. Further considerations on the
proper choice of γ shall be described in the following.

The contribution to the reputation of p (after its recent block
proposal) is set as:

RP(p) =
1

|C|
Σi∈OK(p)RP(p, i).

Updating the reputation score after voting as a committee
member

After the vote is cast, the reputation of each committee
member i is adjusted by adding the following (possibly
negative) component:

RC(i) = MADRP(p)− |RP(p, i)− ERP(p)|

We note that, for γ ≤ 1, being in OK(p) implies a positive
reward in reputation to the committee member, which might
support such a choice of γ: indeed, this way committee
members that are allowed to contribute to the reputation of
the primary are granted an increase in their own reputation.

Further support for choosing a small (smaller than 1) value
of γ is provided by the following argument. Suppose that
a dishonest primary p colludes with a committee member
î so that the role of î is to contribute to the reputation of
p by providing a large value of RP(p, î). Yet, î shall not
perform such an action at the price of lowering its reputation
score. We claim that, by choosing a sufficiently small (yet still
reasonable) value of γ, we can guarantee that î will not be able
to provide a (false) value of RP(p, î) that is out of range. To
concretize the discussion, suppose that each honest committee
members i chooses a value of RP(p, i) that is uniformly
distributed over some interval (RPmin, RPMAX). Then, it can
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be verified that, by choosing γ ≤ |C|
|C|+2 , î cannot increase

RP(p, î) beyond the (maximal nominal value of) RPMAX and
still be admitted into OK(p). For example, for a committee of
size |C| = 8, we would require γ ≤ 0.8.

D. Reputation’s Reward and Punishment

Maintaining a high reputation should maximize a node’s
utility, both directly and indirectly: directly - by offering
monetary rewards for high values and imposing monetary
penalties for small values; indirectly - by increasing the chance
of being elected as primary or committee member, which, in
turn, should provide monetary rewards. We proceed to discuss
these in some more detail.

Primary node election
The primary should be randomly chosen among the set of

nodes whose reputation achieves at least some predetermined
(non-negative) value RPmin. Denote the set of such nodes by
SP . Then, the probability pP (n), of choosing a node n in SP
as primary, is set to

pP (n) =
RS(n)

Σm∈SP
RS(m)

.

We may want to allow “mutations”, so as not to be locked in
a local optimum. E.g.:
• pP (n) is computed as the convex sum of the above term

and 1/|SP |.
• We might consider allowing also nodes that are out of SP

to be chosen, by assigning them some (sufficiently) small
probability ε. The probability of choosing a node in SP is
then pP (n) = [1−ε ·(N−|SP |)] ·RS(n)/Σm∈SP

RS(m)
where N is the total number of (active) nodes.

Election of committee members
Should follow similar lines, but incorporating the fact that

the primary is out of the game and also that several (namely,
some |C| > 1) members should be chosen.

Penalties and rewards associated with reputation
For maintaining the system, during each time interval each

node n should pay some subscription fee F (n). However, this
fee is made dependent on the reputation scores, as follows.

If the reputation score is “neutral”, i.e., RS(n)=0, then the
fee is set to some nominal value Fmin, which is the minimum
per-node fee that is required for maintaining the system. That
is: F(n)= Fmin, where Fmin > 0 and Fmin ·N is the amount
required for maintaining the (N -nodes) system.

Now, denote by S− and S+ the sets of nodes with non-
positive and strictly positive reputation values (respectively).
Let ψ > 0 be a fine incurred per unit of negative reputation.
Then:
• A node n ∈ S− pays a fee Fmin - ψ · RS(n).
• A node n ∈ S+ pays (or gets, if the value is negative)
Fmin - ψ ·RS(n) · Σm∈S−RS(m) / Σm∈S+RS(m).

E. Possible Extensions

Suppose that we need to guarantee that, no matter how large
a (fixed) external reward for deviating from the protocol is,
the penalty incurred by the reputation system will ultimately
balance it. To that end, we may keep increasing the associated
fine (corresponding to ψ) as long as the node keeps maintain-
ing a negative reputation score. The increased revenues from
such fines would be distributed among the good nodes, as per
above.

Still, a node may misbehave as long as it is beneficial,
then it would behave itself for some time (letting the negative
score diminish enough through the aging process), and then
misbehave again. To address this, we can decrease the rate
of aging as the reputation score gets more negative, i.e., we
maintain a longer history for significantly misbehaving nodes.

V. DECLARATIONS ON PENDING TRANSACTIONS

A. Intuition for Declarations

We would like to further enhance the fairness of the block
selection. Even with the alternative examination of the block
proposal from Section III and the reputation system from
Section IV, it may be easy for a primary to ignore a few
particular transactions without being detected. In particular,
when the block is small it can be easier to manipulate some
part of it. Also, when the network conditions imply low values
of α, the validation process cannot be strict and manipulation
in the block selection is easier to perform.

We proceed to suggest an approach that is based on period-
ically asking nodes to declare the set of transactions they are
aware of. Then, a block proposal would be tested based on a
recent declaration of the primary. When provided, a declaration
would be examined to include enough transactions of other
nodes. A crucial point in this scheme is that, at the time of the
declaration, a node is not aware of the random ordering of the
transactions in a specific future round, thus it cannot predict
those particular transactions of others it has to include and
would like to ignore upon being selected as a primary. To allow
itself to make some meaningful manipulation, it would have
to make in advance a major self adjustment to its declaration,
hence significantly increasing chances for being detected.

A clear correlation exists between the effectiveness of a
declaration and its size. On the one hand, a detailed declaration
can be more helpful for better validation, yet it may require a
large communication overhead. On the other hand, a concise
declaration (e.g., including partial information, or compressed
information with loss) reduces the opportunity to detect miss-
ing transactions in the proposal. We believe that a restriction
on the allowed amount of communication overhead typically
exists, thus we focus on communication-efficient declarations.

A declaration on the set of pending transactions known
to a node can be seen as a description of a set. Designing
such representations, either exactly or concisely, while losing
some information, is a well studied research area with many
applications [8], [9], [10]. The choice of the representation
scheme is based on the application, requirements, such as the
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(b) The Merkle tree, enabling inclusion and exclusion proofs

Fig. 2. Illustration of the Bloom filter and the Merkle tree, two popular data
structures for set representation.

support of answering membership queries, the allowed types
of errors, the ability to prove the inclusion or exclusion of an
element, and whether the order of elements has significance.
For a representation of a set S, there are two kinds of errors in
membership queries: a false positive (when an element x /∈ S
is reported as a member of S) and a false negative (when an
element x ∈ S is reported as a non member).

In the following we give an overview of potential dec-
laration schemes. We examine multiple criteria, such as the
declaration size and the ability to easily examine a declaration
or a block proposal. We also refer to the ability of a node to
prove its honesty (in the block selection) by being able to show
that a missing transaction was not included in a declaration.
The results are summarized, at a high-level, in Table I.

B. Baseline - Reporting Complete List

As a baseline declaration, one might consider a declara-
tion including the complete list of transactions known to a
node. Such a detailed declaration will be long, implying a
large communication overhead. On the positive side, such
a declaration can easily be tested when proposed and later
be useful in a simple validation of the honesty of a block
proposal. To validate the declaration, a node examines that
the complete list includes a large portion of its transactions. A
block proposal is examined by a node by making sure that each
of its transactions, missing although being expected to appear

Scheme Declaration Declaration Block Proving honesty
size testing testing (non-membership)

Complete list Large Local Local Complete
Bloom filter Small Local Partial Partial
Merkle tree Small Commun. Commun. Complete

TABLE I
FUNDAMENTAL PROPERTIES OF VARIOUS DECLARATION SCHEMES

in a block following the block hash threshold, does not appear
in the declaration, namely is not known to the primary.

C. Bloom Filter based Declarations

The Bloom filter [8] is a popular data structure for set
representation, supporting element insertion and answering
membership queries. It is widely used for multiple blockchain
purposes such as summarizing the set of transactions in
an Ethereum block [1] or representing the set of addresses
a Bitcoin SPV (light) client is interested in [11]. Beyond
blockchain, it is also common in many networking device
algorithms [12].

The Bloom filter encounters false positives and has no false
negatives. The probability of an error (ratio of non-member
elements reported as members) decreases when more memory
is allocated for the data structure and increases when a larger
set S is represented. The Bloom filter, illustrated in Fig. 2(a),
stores an array of bits, where a set of hash functions is used to
map elements to locations in the bit array. With initial values
of zero bits, the elements of S are first inserted to the filter,
setting to a value of 1 all bits pointed by the hash functions.
Upon a membership query, the bits mapped by the queried
element are examined and a positive answer is returned only
when all these bits have a value of 1.

We proceed to describe how the Bloom filter can be utilized
for the enforcement of fairness. Every few rounds of block
selections, each node summarizes in a filter the pending
transactions from its local pool that were issued by other nodes
(rather than by the node itself). The node then distributes the
filter to other nodes, while reporting the Bloom parameters
(namely the number of elements, filter length in bits and
hash function number). Other nodes (e.g., those that belong
to a committee, which is selected for this purpose in a hard-
to-predict way) examine the filter validity. They would like
to see that the filter includes, in the set represented by it,
some portion of their transactions. The filter is approved upon
achieving some minimal required support from the committee.
A node whose filter was not approved is not selected as the
primary for the next several rounds. For a node i, we denote
by Si the represented set of known transactions and by Fi
the set of transactions with a positive indication in the Bloom
filter such that Si ⊆ Fi.

In the following rounds, one node is selected as the primary
among those with an approved filter. The primary p proposes
a block EBp selected from the pending transactions that were
available to the primary by the time of computing its most
recent (and recently reported) Bloom filter. Assume that the
block maximal hash value is Tp = max{H(etx)|etx ∈ EBp}.
A committee member i with local pool EPi computes EB′i =
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{etx ∈ EPi|H(etx) ≤ Tp}, the set of etxs in EPi with hash
values lower than Tp. In contrast to the Helix scheme, in its
examination, node i does not simply compare |EBp ∩ EB′i|
to some lower bound but rather it carefully examines ∆i =
EB′i \ EBp, i.e., the set of transactions not included in the
proposal although being expected to. If the primary is honest
it must not be familiar with any such transactions.

Specifically, node i checks whether ∆i is aligned with the
Bloom filter reported by the primary p. Namely, for each etx ∈
∆i one out of the following two conditions should hold:
• etx /∈ Fp, and the transaction was not reported by the

primary as a pending transaction in its pool,
• etx ∈ Fp and the transaction was reported as known

to the primary, yet there was a false positive, namely
etx /∈ Sp.

The validation of the declaration restricts the number of
transactions of the first type, namely those satisfying etx ∈
∆i, etx /∈ Fp. The committee member i examines the trans-
actions in ∆i ⊆ Si. It skips those not in Fp, namely those
for which the filter returns a negative membership indication.
For those in Fp, since they are not included in the proposed
block of the primary, they must not be known to the primary
and the fact they belong to Fp is due to false positives. The
committee member challenges the primary with the list of
such transactions in ∆i ∩Fp. The primary has to demonstrate
that they are indeed false positives by indicating on other
transactions that the hash functions map to the same bits of
the filter. Failing to do so indicates on the primary dishonesty.

Moreover, the Bloom filter properties do not enable the
primary to (completely) prove its honesty, showing that all
missing transactions were not among the set for which the
declaration was computed for. The reason is that the Bloom
filter does not enable to prove the non-membership of an
element in the represented set for such elements causing
the false positives, namely those transactions in ∆i that also
appear in Fp \ Sp.

D. Merkle Tree based Declarations

Another common data structure in Blockchain networks is
the Merkle tree [9], also used for concise set representation
while supporting different functionality than the Bloom filter.
As illustrated in Fig. 2(b), the Merkle tree is a binary tree
where a leaf is associated with a set element and its hash value.
An internal node hash value is computed based on those of its
direct children. The hash value of the root is the Merkle root.

Upon declaring the Merkle root for a represented set S, it
is later possible to prove the inclusion of an element in S. The
Merkle inclusion proof consists of the values of all the siblings
of the nodes in a path to the root from the leaf corresponding to
the element. Moreover, elements can be maintained in a sorted
manner in the tree leaves. This enables to also demonstrate
exclusion of an element through an exclusion proof showing
the inclusion as adjacent leaves of a predecessor and successor,
with lower and higher hash values, respectively.

A declaration of a node i includes publishing the Merkle
root for its pool of pending transactions. Testing the declara-

tion by another node j cannot be done locally by node j and
requires sending challenges to node i. Based on sampling,
node j repeatedly selects a transaction it issued and asks
node i to demonstrate it is included within the tree through
a membership proof. This should also include statistically
verifying the tree values are sorted through examining the
locations of the queried transactions. Node j approves the
declaration if a large portion of its challenges are answered by
node i. Given a block proposal, a committee member identifies
the missing transactions and demands from the primary an
exclusion proof demonstrating that such transactions were
not included in the declaration. Providing such proofs for all
missing transactions establishes the honesty of a primary node.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a set of new techniques to
enhance the fairness of block selection. First, we described an
accurate evaluation of a block proposal through a joint decision
of committee members. We then presented a reputation system
for incentivizing nodes to follow the block selection protocol
and to provide a honest feedback on block proposals of other
nodes. Last, we showed how declarations of nodes on their
pools of pending transactions can dramatically limit their
ability to manipulate the block selection. For future work, we
would like to find optimal tradeoffs among the characteristics
of transaction declaration schemes. In particular, we would
like to determine the existence of a scheme implying short
declarations that enables local testing of a declaration and a
block proposal, while maintaining the ability to show the non-
membership of any transaction not part of the declaration.
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